
 

 

 

 
Security Assessment  
Final Report  
 
 
 
 
 

 
 
 
 
 

Silo Leverage 

July 2025 
 
Prepared for Silo 

 



 ​ ​ ​ ​ ​ ​ ​  

Table of content 
Project Summary..................................................................................................................................................................................3 

Project Scope................................................................................................................................................................................................................................... 3 
Project Overview.............................................................................................................................................................................................................................3 

Protocol Overview.................................................................................................................................................................................................................3 
Findings Summary......................................................................................................................................................................................................................... 4 
Severity Matrix................................................................................................................................................................................................................................. 4 

Detailed Findings..................................................................................................................................................................................5 
Medium Severity Issues...............................................................................................................................................................7 
M-01. Fee-on-Transfer tokens corrupt the Silo accounting..............................................................................................................................7 
M-02. Opening a position at or near maximum leverage will revert due to leverageFee..............................................................8 
M-03. Leverage does not enforce any checks on the validity of the “silo” targets..........................................................................9 
M-04. Missing cross-contract reentrancy protection in leverageUsingSiloFlashloan contract............................................ 10 
M-05. Protected collateral can’t be closed with permit..................................................................................................................................... 11 
Low Severity Issues..................................................................................................................................................................... 13 
L-01. General swap sender should only be the leverage contract.............................................................................................................. 13 
L-02. Missing helper functions to show users maximum leverage............................................................................................................. 14 
L-03. GeneralSwapModule donates any existing contract funds to next user.................................................................................. 15 
L-04. Zero amount check on swap is ignored if there are funds in the contract............................................................................. 16 
L-05. calculateDebtReceiveApproval return value is incorrect if flashloan provider is not Silo..............................................17 
L-06. openLeveragePosition event does not emit leverage of the position.........................................................................................18 
L-07. closeLeveragePosition forces full closure of the position, deleveraging partially is not possible............................ 19 
L-08. rescueTokens has no access control restriction..................................................................................................................................... 20 
L-09. maxApprovals should be reset at the end of the transaction..........................................................................................................21 
L-10. try/catch around executePermit is flawed.....................................................................................................................................................22 
L-11. Missing slippage protection can cause unexpected losses................................................................................................................ 23 
L-12. RevenueModule is not protected by reentrancy........................................................................................................................................24 
L-13. GeneralSwap unprotected arbitrary call......................................................................................................................................................... 25 
Informational Issues...................................................................................................................................................................26 
I-01. Leverage does not support the same asset debt......................................................................................................................................26 
I-02. Double call to onFlashLoan...................................................................................................................................................................................... 26 
I-03. No rescue function for native token.................................................................................................................................................................. 26 
I-04. Reset transient variables at the end of the function flow................................................................................................................... 27 
I-05. Rebase tokens are incompatible with the module...................................................................................................................................27 
I-06. Leverage fee cannot be set to maximum value..........................................................................................................................................27 
I-07. CREATE2-based cloning is incompatible with zkSync Era..................................................................................................................28 

Disclaimer............................................................................................................................................................................................ 29 
About Certora..................................................................................................................................................................................... 29 

 

​ 2 



 ​ ​ ​ ​ ​ ​ ​  

Project Summary 
Project Scope 

Project 
Name 

Repository (link) 
Initial Commit 
Hash 

Final Commit 
Hash 

Platform 

Silo 
https://github.com/silo-finance
/silo-contracts-v2 

af2ba96 66a08a3 EVM 

​
Project Overview 

This document describes the findings of the manual for the Silo Leverage Module. The work was 
undertaken from 7th of July to 11th of July 

The following contract list is included in our scope: 

silo-core/contracts/leverage/modules/GeneralSwapModule.sol  
silo-core/contracts/leverage/modules/LeverageTxState.sol  
silo-core/contracts/leverage/modules/RevenueModule.sol  
silo-core/contracts/leverage/LeverageUsingSiloFlashloan.sol  
silo-core/contracts/leverage/LeverageUsingSiloFlashloanWithGeneralSwap.sol 
 
The list of additional contracts after the fix: 
 
silo-core/contracts/leverage/modules/RescueModule.sol 
silo-core/contracts/leverage/LeverageRouter.sol 

Protocol Overview 

The Silo leverage module provides users with the ability to amplify their exposure to assets 
within Silo's lending markets through automated flashloan-based leverage operations. Users can 
open leveraged positions by borrowing additional capital, converting it to their desired asset, and 
using the combined position as collateral for the borrowed funds. Users can also close their 
leveraged positions by unwinding the collateral back to the borrowed asset and settling their 
debt. The module integrates with external DEX aggregators to facilitate efficient asset swaps. 

​ 3 

https://github.com/silo-finance/silo-contracts-v2
https://github.com/silo-finance/silo-contracts-v2
https://github.com/silo-finance/silo-contracts-v2/commit/af2ba96447d9f373e81f6f75ce26e34b381806ed
https://github.com/silo-finance/silo-contracts-v2/tree/66a08a3c8100f6a7d46143dcbf70334f1ef7827d


 ​ ​ ​ ​ ​ ​ ​  

Findings Summary  

The table below summarizes the findings of the review, including type and severity details. 
 

Severity Discovered Confirmed Fixed  

Critical - - - 

High - - - 

Medium 5 5 1 

Low 13 13 4 

Informational 7 7 5 

Total 25 25 10 

 

Severity Matrix 

Impact 

High Medium High Critical 

Medium Low Medium High 

Low Low Low Medium 

  Low Medium High 

  Likelihood 

 

​ 4 



 ​ ​ ​ ​ ​ ​ ​  

Detailed Findings 
 
 

ID Title Severity Status 

M-01 Fee-on-Transfer tokens corrupt Silo accounting Medium Acknowledged 

M-02 Opening a position at or near maximum leverage 
will revert due to leverageFee 

Medium Acknowledged 

M-03 Leverage does not enforce any checks on the 
validity of the “silo” targets 

Medium Acknowledged 

M-04 Missing cross-contract reentrancy protection in 
leverageUsingSiloFlashloan contract 

Medium Acknowledged 

M-05 Protected collateral can’t be closed with permit Medium Fixed 

L-01 General swap sender should only be the leverage 
contract 

Low Acknowledged 

L-02 Missing helper functions to show users current and 
maximum leverage 

Low Acknowledged 

L-03 GeneralSwapModule donates any existing contract 
funds to next user 

Low Acknowledged 

L-04 Zero amount check on swap is ignored if there are 
funds in the contract 

Low Acknowledged 

L-05 calculateDebtReceiveApproval return value is 
incorrect if flashloan provider is not Silo 

Low Fixed 

​ 5 



 ​ ​ ​ ​ ​ ​ ​  

L-06 openLeveragePosition event does not emit leverage 
of the position 

Low Acknowledged 

L-07 closeLeveragePosition forces full closure of the 
position, deleveraging partially is not possible  

Low Acknowledged 

L-08 rescueTokens has no access control restriction Low Fixed 

L-09 maxApprovals should be reset at the end of the 
transaction 

Low Fixed 

L-10 try/catch around executePermit is flawed Low Acknowledged 

L-11 Missing slippage protection can cause unexpected 
losses 

Low Acknowledged 

L-12 RevenueModule is not protected by reentrancy Low Fixed 

L-13 GeneralSwap unprotected arbitrary call. Low Acknowledged 

I-01 Leverage does not support the same asset debt Info Fixed 

I-02 Double call to onFlashLoan Info Fixed 

I-03 No rescue function for native token Info Fixed 

I-04 Reset transient variables at the end of the function 
flow 

Info Fixed 

I-05 Rebase tokens are incompatible with the module Info Acknowledged 

I-06 Leverage fee cannot be set to maximum value Info Fixed 

I-07 CREATE2-based cloning is incompatible with 
zkSync Era 

Info Acknowledged 

 

​ 6 



Rust

 ​ ​ ​ ​ ​ ​ ​  

Medium Severity Issues 

M-01. Fee-on-Transfer tokens corrupt the Silo accounting 

Severity: Medium Impact: High Likelihood: Low 

Files:  
LeverageUsingSiloFlas
hloan 

Status: Acknowledged  

Description:   

The leverage module assumes that the token amounts remain constants during transfers, which 
is not the case with fee-on-transfer tokens. As a result, opening a leveraged position with FOT 
tokens creates and/or widens a gap between recorded asset holdings and actual token holdings.  

// LeverageUsingSiloFlashloan.sol:191-199 
uint256 totalDeposit = depositArgs.amount + collateralAmountAfterSwap; 
 
// Fee is taken on totalDeposit = user deposit amount + collateral amount after swap 
uint256 feeForLeverage = calculateLeverageFee(totalDeposit); 
 
totalDeposit -= feeForLeverage; 
address collateralAsset = depositArgs.silo.asset(); 
_deposit({_depositArgs: depositArgs, _totalDeposit: totalDeposit, _asset: collateralAsset}); 

 

If for example a position is opened for 100 FOT tokens with a 2% fee, then the 
depositArgs.amount = 100, but the actual amount of tokens transferred will be 98.  This creates 
a discrepancy between the actual token balance (98) and the recorded asset amount (100). 
This will widen with every FOT transaction and lead to solvency issues.   

Recommendations:  Block FOT tokens from using the leverage module.  

Customer’s response: Fee-on-Transfer tokens are not supported in Silo V2 protocol. 

​ 7 



 ​ ​ ​ ​ ​ ​ ​  

M-02. Opening a position at or near maximum leverage will revert due to leverageFee 

Severity: Medium Impact: Low Likelihood: High 

Files:  
LeverageUsingSiloFlas
hloan 

Status: Acknowledged  

Description:   

If a user tries to leverage a position at or near the theoretical maximum leverage based on LTV 
and position, this will almost always revert due to impact of the leverageFee.  

If we have a user who wants to open a position at max leverage in a silo with 80% LTV: 

●​ Deposit: 1000 
●​ FlashLoan: 4000 
●​ Expected total collateral: 5000 
●​ Expected LTV: 4000/5000 = 80% 

The logic will correctly execute but when it hits _openLeverage, the leverageFee is deducted 
from the total collateral and the remainder is actually deposited. Assuming 1% fee: 

●​ totalDeposit: 5000 - 50 = 4950 

This is problematic since in the subsequent borrow() function, the maximum LTV is checked and 
the function will revert: 

●​ 4000/4950 = 81% > 80 => revert. 

The higher the leverageFee, the more transactions close to the maximum leverage will revert. 

Recommendations:  Either provide helper functions that inform the user how much leverage he 
can take, or rework the leverage function to automatically take the maximum leverage possible if 
the requested leverage exceeds LTV due to fees.  

Customer’s response: In our case, frontend will be responsible for calculating proper input so 
the user can perform leverage without reverting. 

​ 8 



 ​ ​ ​ ​ ​ ​ ​  

M-03. Leverage does not enforce any checks on the validity of the “silo” targets 

Severity: Medium Impact: Medium Likelihood: High 

Files:  
LeverageUsingSiloFlas
hloan.sol 

Status: Acknowledged  

Description: Currently there is no mechanism in place to have any validation on the targets for 
leverage, this might be used in some sophisticated attacks where we trick the leverage 
contract to call malicious custom contracts.  

An example from openLeveragePosition 

 

No validation on _depositArgs.   

Recommendations: Implement a defences mechanism similar to the one that can be found in 
partialLiquidation.sol, having a factory clone leverage and tying down to  only a single silo pair. 
This should overall improve separation (one of the core uses for Silo), and would mitigate a lot 
of attack vectors.  

Note: Our analysis yields that this can mitigate most potential attack vectors. 

Customer’s response: Acknowledged. Silo registry from SiloFactory is not trusted, because Silo 
implementation is specified by deployer. “silo“ targets can't be validated, it is a user’s input. 

​ 9 



 ​ ​ ​ ​ ​ ​ ​  

M-04. Missing cross-contract reentrancy protection in leverageUsingSiloFlashloan 
contract 

Severity: Medium Impact: Low Likelihood: High 

Files:  
LeverageUsingSiloFlas
hloan 

Status: Acknowledged  

 

Description:   

The LeverageUsingSiloFlashloan contract implements only local reentrancy protection via 
TransientReentrancy.nonReentrant, but lacks any form of cross-contract reentrancy protection. 

This is a significant issue since such protection (siloConfig.turnOnReentrancyProtection()) is 
used in all Silo operations involving external calls. This is especially worrisome since the leverage 
utilises an arbitrary external call, allowing anyone to re-enter the silo protocol at almost any entry 
point.  

It’s also worth noting that the PartialLiquidation contract, the only other contract that uses 
TransientReentrancy protection, does properly implement the additional cross-contract 
protection.  

Recommendations:  Apply both local and cross-contract reentrancy protection. 

Customer’s response: Acknowledged. It is a design choice. Leverage is a periphery contract. 
Liquidation is part of Silo itself. We don’t couple leverage and silo the way we couple liquidation. 
Changes to Silo core contract should be avoided to limit potential mistakes and additional work. 

 

 

 

​ 10 



JavaScript

JavaScript

 ​ ​ ​ ​ ​ ​ ​  

M-05. Protected collateral can’t be closed with permit 

Severity: Medium Impact: Low Likelihood: High 

Files:  
LeverageUsingSiloFlas
hloan 

Status: Fixed  

 

Description: The Silo leverage system allows users to close leveraged positions using a 
permit-based approval for collateral withdrawal. However, the implementation only works for 
borrowable collateral and silently fails for protected collateral, potentially leaving users unable 
to close positions as expected. 

   function closeLeveragePositionPermit( 
        address _msgSender, 
        bytes calldata _swapArgs, 
        CloseLeverageArgs calldata _closeArgs, 
        Permit calldata _withdrawAllowance 
    ) 
        external 
        virtual 
    { 
        _executePermit(_msgSender, _withdrawAllowance, 
address(_closeArgs.siloWithCollateral)); 
 
        closeLeveragePosition(_msgSender, _swapArgs, _closeArgs); 
    } 

 
The permit is always executed on the Silo contract, but the actual withdrawal logic is: 

uint256 withdrawnDeposit = closeArgs.siloWithCollateral.redeem({ 
    _shares: sharesToRedeem, 
    _receiver: address(this), 
    _owner: _txMsgSender, 

​ 11 



JavaScript

JavaScript

 ​ ​ ​ ​ ​ ​ ​  

    _collateralType: closeArgs.collateralType 
}); 

 
Inside the Silo contract, the withdrawal path is: 

(assets, shares) = SiloERC4626Lib.withdraw( 
    depositConfig.token, 
    _args.collateralType == ISilo.CollateralType.Collateral 
        ? depositConfig.collateralShareToken 
        : depositConfig.protectedShareToken, 
    _args 
); 

 
And the actual approval check is here: 

IShareToken(_shareToken).burn(_args.owner, _args.spender, shares); 

 
So for CollateralType.Collateral, the Silo contract itself is the share token, so the permit works. 
But for CollateralType.Protected, the share token is a separate contract, and the permit on the 
Silo contract does not grant approval to the leverage contract to burn the user's protected 
share tokens. So the transaction will revert if the user has not already approved the leverage 
contract on the protected share token. 

Recommendations: Update the leverage contract to detect the collateral type and, for 
protected collateral, execute the permit on the protected share token contract rather than the 
Silo contract. 

Customer’s response: Fixed in PR#1511. 

​ 12 

https://github.com/silo-finance/silo-contracts-v2/pull/1511/files


 ​ ​ ​ ​ ​ ​ ​  

Low Severity Issues 

L-01. General swap sender should only be the leverage contract 

Severity: Low Impact: Low Likelihood: Low 

Files:  
GeneralSwapModule.s
ol 

Status: Acknowledged  

 

Description:  Currently, every contract can call fillQuote, which is a dangerous external call that 
really should never be called by any address except a leverage contract. 

Recommendations: Enforce that each leverage contract has a clone of the general swap, and 
only that leverage contract can call fillQuote with a modifier such as onlyLeverage. 

Customer’s response: Acknowledged. It is a design choice. We are going to clone 
LeverageUsingSiloFlashloanWithGeneralSwap and it will use GeneralSwapModule deployed by 
constructor. All clones will use the same GeneralSwapModule so it cannot be protected. 

 
 
 
 
 
 
 
 
 
 
 
 

​ 13 



 ​ ​ ​ ​ ​ ​ ​  

L-02. Missing helper functions to show users maximum leverage 

Severity: Low Impact: Low Likelihood: High 

Files:  
SiloLensLib 
 

Status:  Acknowledged  

 

Description:  For any protocol (or user) integrating with the leverage module, it is imperative that 
they are aware of the maximum effective leverage they can take for any position, in order to 
efficiently use the functionality. 

There are helper functions for LTV and position, but these are insufficient for the maximum 
leverage since it a dynamic variable which is depended on: 

●​ Maximum LTV of the Silo, which is unique per Silo 
●​ Existing collateral and debt within the Silo pair 
●​ Collateral deposited during the openLeveragePosition call 
●​ Flash and leverage fees 

This leads to a significant degradation of the user experience since user will have to make rough 
guesses of what leverage they can have and have a meaningful amount of leverage calls revert. 

Recommendations: Add helper functions to show the current and maximum leverage for any 
given position. 

Customer’s response: Acknowledged. It is calculated on UI.  

 
 
 
 
 

​ 14 



 ​ ​ ​ ​ ​ ​ ​  

L-03. GeneralSwapModule donates any existing contract funds to next user 

Severity: Low Impact: Low Likelihood: Medium 

Files:  
GeneralSwapModule 
 

Status:  Acknowledged  

 

Description:   

The GeneralSwapModule contract uses balanceOf to determine the amount of funds to send to 
the user.  

 

This is not recommended since it means that any existing funds on the contract (failed previous 
transactions, dust due to rounding, donations, etc..) will be donated to the next caller.  

Recommendations:  Use the data returned from the arbitrary call to determine the amount to 
be sent.  

Customer’s response: Acknowledged. It is a design choice. 

 

 
 
 

​ 15 



 ​ ​ ​ ​ ​ ​ ​  

L-04. Zero amount check on swap is ignored if there are funds in the contract 

Severity: Low Impact: Low Likelihood: Low 

Files:  
GeneralSwapModule 

Status: Acknowledged  

 

Description:   

The fillQuote check on zero amount is based on the contract balance. 

 

This is not recommended since any existing funds on the contract (1 wei donation of buyToken) 
would cause a malicious swap with no returned buyTokens to not revert, thereby bypassing a 
critical verification step.  

Recommendations:  No check should be depended on a variable that is so easily manipulated.  

Customer’s response: Acknowledged. 

 

 

 

 

​ 16 



 ​ ​ ​ ​ ​ ​ ​  

L-05. calculateDebtReceiveApproval return value is incorrect if flashloan provider is 
not Silo 

Severity: Low Impact: Low Likelihood: Low 

Files:  
LeverageUsingSiloFlas
hloan 

Status: Fix  

 

Description:   

The calculateDebtReceiveApproval function returns the required amount to approve for the 

leverageOpenPosition function to succeed. 

However, it takes into account a flashfee which is unique to Silo. If the user/protocol decides to 
use a different flashloan provider, the amount returned will be incorrect: 

-​ If other.flashfee > silo.flashfee ⇒ approval will be insufficient 
-​ if other.flashee < silo.flashfee ⇒ approval will be too large 

Recommendations:  The function should clarify in natspec and naming that it should only be 
used when the SILO flashloan functionality is used. 

Customer’s response: Fixed in PR#1481.  

 

 

 

 

 
 

​ 17 

https://github.com/silo-finance/silo-contracts-v2/pull/1481/files


Rust

 ​ ​ ​ ​ ​ ​ ​  

L-06. openLeveragePosition event does not emit leverage of the position 

Severity: Low Impact: Low Likelihood: Low 

Files:  
LeverageUsingSiloFlas
hloan 

Status: Acknowledged  

 

Description:  The openLeveragePosition function emits the following event:  

        emit OpenLeverage({ 
            borrower: _txMsgSender, 
            borrowerDeposit: depositArgs.amount, 
            swapAmountOut: collateralAmountAfterSwap, 
            flashloanAmount: _flashloanAmount, 
            totalDeposit: totalDeposit, 
            totalBorrow: _flashloanAmount + _flashloanFee, 
            leverageFee: feeForLeverage, 
            flashloanFee: _flashloanFee 
        }); 
 

 
This does not tell the user the actual leverage of the position. Which is critical information for 
managing the risk of the position.  

Recommendations:  Emit the precise leverage of the position. 

Customer’s response: Acknowledged. 

 

 
 

​ 18 



 ​ ​ ​ ​ ​ ​ ​  

L-07. closeLeveragePosition forces full closure of the position, deleveraging partially 
is not possible 

Severity: Low Impact: Low Likelihood: Low 

Files:  
LeverageUsingSiloFlas
hloan 

Status: Acknowledged  

 

Description:   

The closeLeveragePosition forces the user to not only remove all leverage from the position but 
also to fully close the position.  

Partial deleveraging is a standard feature in any leveraging protocol. As is, users would be forced 
to fully close their position and then reopen it at the leverage that they prefer. Thereby suffering 
from highly increased fees.   

Recommendations:  The open and close LeveragePosition functions should be refactored into 
one LeveragePosition function where the user can specify the degree of leverage he desires. 

Customer’s response: Acknowledged. 

 

 

 

 

 

 

 

​ 19 



 ​ ​ ​ ​ ​ ​ ​  

L-08. rescueTokens has no access control restriction 

Severity: Low Impact: High Likelihood: High 

Files:  
RevenueModule.sol 
 

Status:  Fixed  

 

Description:   

The rescueTokens functions send any balance of ERC20 tokens on the contract to a specified 
revenueReceiver. This is admin functionality and should not be callable by anyone.   

 

Recommendations:  Add onlyOwner modifier. 

Customer’s response: Fixed in PR#1480. Tokens receiver is the user for whom the contract was 
cloned. Only this user can execute rescue function. 

 
 
 
 
 
 
 
 
 

​ 20 

https://github.com/silo-finance/silo-contracts-v2/pull/1480


 ​ ​ ​ ​ ​ ​ ​  

L-09. maxApprovals should be reset at the end of the transaction 

Severity: Low Impact: Low Likelihood: High 

Files:  
LeverageUsingSiloFlas
hloan 

Status:  Fixed  

 

Description:   

Currently the contract logic sets the approval of a spender to  uint256.max if the given allowance 
is not sufficient.  

Using such huge allowances is a very risky design decision since it opens a clear attack vector if 
the contract is compromised in any way. This should be avoided whenever possible.  

Recommendations:  reset the allowances back to 0 at the end of each transaction.  
Alternatively, implementing the recommendations of M-03 would alleviate the need to reset 
allowances.  

Customer’s response: Fixed in PR#1474. Max approvals were removed. Leverage contract 
approves exact amounts. 

 

 
 
 
 
 
 
 
 
 

​ 21 

https://github.com/silo-finance/silo-contracts-v2/pull/1474/files


Rust

 ​ ​ ​ ​ ​ ​ ​  

L-10. try/catch around executePermit is flawed 

Severity: Low Impact: Low Likelihood: High 

Files: 
LeverageUsingSiloFlas
hloan 

Status:  Acknowledged  

Description:  A try/catch has been implemented around the _executePermit in order to mitigate 
the frontrunning DOS attack. However, allowing the function to continue regardless of the state of 
the permit means that any legitimately incorrect permit is ignored and the transaction will only 
fail on the actual safeTransfer call, wasting quite a bit of gas for no reason.  

Recommendations:   

    function _executePermit(Permit memory _permit, address _token) internal virtual { 
        try IERC20Permit(_token).permit({ 
            owner: msg.sender, 
            spender: address(this), 
            value: _permit.value, 
            deadline: _permit.deadline, 
            v: _permit.v, 
            r: _permit.r, 
            s: _permit.s 
        }) { 
            return; 
        } catch { 
            // Permit potentially got frontrun, continue if allowance is sufficient 
            if(IERC20(_token).allowance(owner,spender) >= value { 
                return; 
            } 
    } 

 
Customer’s response: Acknowledged. Design choice. 

 

​ 22 



 ​ ​ ​ ​ ​ ​ ​  

L-11. Missing slippage protection can cause unexpected losses 

Severity: Low Impact: High Likelihood: High 

Files:  
LeverageUsingSiloFlas
hloan 

Status: Acknowledged  

 

Description:   

There is presently no slippage check present to ensure that the swap did not lose an exorbitant 
amount of tokens due to slippage. As long as enough collateral has been returned to satisfy the 
LTV ratio, the function call will proceed.  

This can cause situations of massive loss in cases where the leverage demanded was low.  

Recommendations:  While it can be argued that this the user’s responsibility, it is advised to add 
in an explicit check to avoid inexperienced users shooting themselves in the foot.  

Customer’s response: Acknowledged. Design choice. Swap arguments should have a proper 
slippage to avoid any losses. 

 
 
 
 
 
 
 
 
 
 
 

​ 23 



 ​ ​ ​ ​ ​ ​ ​  

L-12. RevenueModule is not protected by reentrancy 

Severity: Low Impact: Low Likelihood: Low 

Files:  
RevenueModule.sol 
 

Status:  Fixed  

 

Description:  RevenueModule exposes external methods but is not protected by a reentrancy 
guard. This can lead to a complicated combined attack where funds are siphoned mid-leverage. 

 

Recommendations:  Should add the nonReentrant modifier to those methods. 

Customer’s response: Fixed in PR#1470. 

 

 

 

 

 

 

 

​ 24 

https://github.com/silo-finance/silo-contracts-v2/pull/1470/files


 ​ ​ ​ ​ ​ ​ ​  

L-13. GeneralSwap unprotected arbitrary call 

Severity: Low Impact: Low Likelihood: Low 

Files:  
GeneralSwapModule.s
ol 
 

Status:  Acknowledged  

 

Description:  GeneralSwap fillQuote has an external-facing method with unprotected arbitrary 
call. 

 

Recommendations:   

1.​ Have a whitelist and a blacklist of valid addresses/calls that can be called from this 
address.  

Customer’s response: Acknowledged. Design choice. This contract should not have any 
leftovers. 

​ 25 



 ​ ​ ​ ​ ​ ​ ​  

Informational Issues 

I-01. Leverage does not support the same asset debt 

Description: The contract does not support users who have the same asset debt; if intentional, 
this should be documented clearly so the front end can show that to the user to reduce 
frustration. 
 
Recommendation: Add documentation or a view method that checks if a user can use leverage. 
 
Customer’s response: Fixed in PR#1473. 
 
 

I-02. Double call to onFlashLoan 

Description: onFlashLoan has no limit to the number of times it can be called. Under normal use, 
it should always be called only once in a flow. 
 
Recommendation:  add a transient onlyOnce modifier to make sure this method could never be 
called more than once for each call. 
 
Customer’s response:  Fixed in PR#1477. 
 
 

I-03. No rescue function for native token 

Description: While the rescueTokens function can retrieve any ERC20 token, all native token 
deposits cannot be rescued. 
 
Recommendation:  add a rescueNativeToken function. 
 
Customer’s response:  Fixed in PR#1482. 
 

​ 26 

https://github.com/silo-finance/silo-contracts-v2/pull/1473/files
https://github.com/silo-finance/silo-contracts-v2/pull/1477/files
https://github.com/silo-finance/silo-contracts-v2/pull/1482


JavaScript

 ​ ​ ​ ​ ​ ​ ​  

I-04. Reset transient variables at the end of the function flow 

Description: The transient variables are set at the beginning of the transaction but not explicitly 
reset at the end of the function flow. It is a general good practice to reset these to avoid any 
possibility of state corruption due to batching.  
 
Recommendation:  reset the transient variable at the end of the function flow.  
 
Customer’s response:  Fixed in PR#1477. 
 
 

I-05. Rebase tokens are incompatible with the module 

Description: Rebase tokens are not compatible with the leverage module due to unpredictable 
return values and variable balances due to rebasing.  
 
Recommendation:  Add natspec to make clear that rebase tokens not never be used for 
leverage.  
 
Customer’s response:  Acknowledged. Rebasing tokens are not supported in Silo V2 protocol 
 
 

I-06. Leverage fee cannot be set to maximum value 

Description: In RevenueModule.sol, the leverage fee setter enforces: 
 

   function setLeverageFee(uint256 _fee) external onlyRole(OWNER_ROLE) { 
        require(revenueReceiver != address(0), ReceiverZero()); 
        require(leverageFee != _fee, FeeDidNotChanged()); 
@>      require(_fee < MAX_LEVERAGE_FEE, InvalidFee()); 
 
        leverageFee = _fee; 
        emit LeverageFeeChanged(_fee); 
    } 

 

​ 27 

https://github.com/silo-finance/silo-contracts-v2/pull/1477


JavaScript

 ​ ​ ​ ​ ​ ​ ​  

This means the maximum allowed fee (5%, or 0.05e18) can never actually be set, as only values 
strictly less than the maximum are accepted. For example, setting the fee to exactly 5% will 
always revert. 
 
Recommendation: Change the check to allow the maximum value: 
 

   function setLeverageFee(uint256 _fee) external onlyRole(OWNER_ROLE) { 
        require(revenueReceiver != address(0), ReceiverZero()); 
        require(leverageFee != _fee, FeeDidNotChanged()); 
-       require(_fee < MAX_LEVERAGE_FEE, InvalidFee()); 
+       require(_fee <= MAX_LEVERAGE_FEE, InvalidFee()); 
 
        leverageFee = _fee; 
        emit LeverageFeeChanged(_fee); 
    } 

 
Customer’s response: Fixed in PR#1507. 
 
 

I-07. CREATE2-based cloning is incompatible with zkSync Era 

Description: The LeverageRouter contract uses the Clones library and the CREATE2 opcode to 
deterministically deploy user-specific leverage contracts. However, zkSync Era uses a different 
address derivation formula for CREATE2 than Ethereum mainnet and most EVM-compatible 
chains. As a result, the predicted addresses and actual deployed addresses will not match, and 
deterministic contract creation will not work as intended. 
 
Recommendation: If you plan to deploy on zkSync Era, do not rely on standard CREATE2 address 
prediction or deterministic contract creation. 
 
Customer’s response: Acknowledged. 
 
 

​ 28 

https://github.com/silo-finance/silo-contracts-v2/pull/1507


 ​ ​ ​ ​ ​ ​ ​  

Disclaimer  
 
 
Even though we hope this information is helpful, we provide no warranty of any kind, explicit or 
implied. The contents of this report should not be construed as a complete guarantee that the 
contract is secure in all dimensions. In no event shall Certora or any of its employees be liable for 
any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising 
from, out of, or in connection with the results reported here. 
 

 
 
About Certora  
 
Certora is a Web3 security company that provides industry-leading formal verification tools and 
smart contract audits. Certora’s flagship security product, Certora Prover, is a unique SaaS 
product that automatically locates even the most rare & hard-to-find bugs on your smart 
contracts or mathematically proves their absence. The Certora Prover plugs into your standard 
deployment pipeline. It is helpful for smart contract developers and security researchers during 
auditing and bug bounties. 
 
Certora also provides services such as auditing, formal verification projects, and incident 
response. 

​ 29 


	 
	Security Assessment  
	Final Report  
	Project Summary 
	Project Scope 
	​Project Overview 
	Protocol Overview 

	Findings Summary  
	Severity Matrix 

	Detailed Findings 
	Medium Severity Issues 
	M-01. Fee-on-Transfer tokens corrupt the Silo accounting 
	M-02. Opening a position at or near maximum leverage will revert due to leverageFee 
	M-03. Leverage does not enforce any checks on the validity of the “silo” targets 
	M-04. Missing cross-contract reentrancy protection in leverageUsingSiloFlashloan contract 
	M-05. Protected collateral can’t be closed with permit 
	Low Severity Issues 
	L-01. General swap sender should only be the leverage contract 
	L-02. Missing helper functions to show users maximum leverage 
	L-03. GeneralSwapModule donates any existing contract funds to next user 
	L-04. Zero amount check on swap is ignored if there are funds in the contract 
	L-05. calculateDebtReceiveApproval return value is incorrect if flashloan provider is not Silo 
	L-06. openLeveragePosition event does not emit leverage of the position 
	L-07. closeLeveragePosition forces full closure of the position, deleveraging partially is not possible 
	L-08. rescueTokens has no access control restriction 
	L-09. maxApprovals should be reset at the end of the transaction 
	L-10. try/catch around executePermit is flawed 
	L-11. Missing slippage protection can cause unexpected losses 
	L-12. RevenueModule is not protected by reentrancy 
	L-13. GeneralSwap unprotected arbitrary call 
	Informational Issues 
	I-01. Leverage does not support the same asset debt 
	I-02. Double call to onFlashLoan 
	I-03. No rescue function for native token 
	I-04. Reset transient variables at the end of the function flow 
	I-05. Rebase tokens are incompatible with the module 
	I-06. Leverage fee cannot be set to maximum value 
	I-07. CREATE2-based cloning is incompatible with zkSync Era 

	Disclaimer  
	 
	 
	About Certora  

