
Draf
t

​
Security Assessment &
Formal Verification

Final Report

Silo Vault

April 2025

Prepared for Silo

Table of Contents
Project Summary...4

Project Scope.. 4
Project Overview... 4
Findings Summary.. 5
Severity Matrix...5

Detailed Findings.. 6
Critical Severity Issues.. 8
C-01 Funds could be permanently lost due to a share price inflation attack in ERC4626 markets.................8
High Severity Issues..10
H-01 Permissionless skim() function allows draining market tokens...10
Medium Severity Issues.. 12
M-01 Missing VaultIncentivesModule initialization by SiloVaultsFactory...12
M-02 The Incentive Module’s owner can execute arbitrary code on behalf of the Vault............................... 14
M-03 Public Allocator could be DoS..16
Low Severity Issues.. 18
L-01 Factories using CREATE opcode create contracts vulnerable to reorgs.. 18
L-02 Vault does not revoke its infinite approval from removed markets..20
L-03 Vault’s transfer and transferFrom are not protected for reentrancy...22
L-04 Insufficient gas for PublicAllocator’s native fee collection... 24
L-05 Fee Recipient could lose rewards for newly generated fees...26
L-06 Vault could be vulnerable to an inflation attack... 28
L-07 Faulty or malicious markets could drain the Vault...29
L-08 Removing an active Notification Receiver could drain the incentive program...................................... 30
Informational Severity Issues.. 31
I-01. Rewards distribution consumes a lot of gas..31
I-02. Redundant setting of withdrawn variable to 0... 32

Formal Verification..33
Verification Notations...33
General Assumptions and Simplifications... 33
Formal Verification Properties... 34
Module General Assumptions... 34
P-01. Reachable states are consistent..34
P-02. Contract variables stay within allowed ranges...35
P-03. Pending values are consistent...36
P-04. Roles hierarchy..37
P-05. Methods update balances correctly... 37
P-06. Timelocks work correctly..38
P-07. Consistency of Supply and Withdraw queues... 38
P-08. Risk assessment..39

​ 2

P-09. Methods revert on incorrect inputs and don’t revert otherwise.. 40
Mitigation Review..42

Project Scope.. 42
Project Overview... 42
Findings Summary.. 43
Severity Matrix...43

Detailed Findings.. 44
Medium Severity Issues.. 45
M-01 Guardian can perform active operations.. 45
M-02 Legitimate deposits into markets could be skipped..47
Low Severity Issues.. 49
L-01 First depositor could still deflate the share price using calls to reallocate...49
Informational Severity Issues.. 50
I-01. Unnecessary assignment inside of loop..50
I-02. Off-by-one discrepancy with validAt..51
I-03. Residual unused code...52

Disclaimer.. 53
About Certora.. 53

​ 3

Project Summary
Project Scope

Project Name Repository (link)
Latest Commit
Hash

Platform

silo-vaults

https://github.com/silo-financ
e/silo-contracts-v2/tree/devel
op/silo-vaults/contracts

2a93015 EVM

Project Overview

This document describes the specification and verification of silo-vaults using the Certora
Prover and manual code review findings. The work was undertaken from 27.1.25 to 10.2.25.

The following contract list was included in our scope:

contracts/SiloVault.sol
contracts/SiloVaultsFactory.sol
contracts/PublicAllocator.sol
contracts/IdleVault.sol
contracts/libraries/ConstantsLib.sol
contracts/libraries/ErrorsLib.sol
contracts/libraries/EventsLib.sol
contracts/libraries/PendingLib.sol
contracts/incentives/VaultIncentivesModule.sol
contracts/incentives/claiming-logics/SiloIncentivesControllerCL.sol
contracts/incentives/claiming-logics/SiloIncentivesControllerCLFactory.sol

The Certora Prover demonstrated that the implementation of the Solidity contracts above is
correct with respect to the formal rules written by the Certora team. In addition, the team
performed a manual audit of all the Solidity contracts. During the verification process and the
manual audit, the Certora team discovered bugs in the Solidity contracts code, as listed on the
following page.

​ 4

https://github.com/silo-finance/silo-contracts-v2/tree/develop/silo-vaults/contracts
https://github.com/silo-finance/silo-contracts-v2/tree/develop/silo-vaults/contracts
https://github.com/silo-finance/silo-contracts-v2/tree/develop/silo-vaults/contracts
https://github.com/silo-finance/silo-contracts-v2/commit/2a93015a286a977fd6f906ca557a75207423acdb

Protocol Overview

Silo Vault is an ERC4626 Vault which allows users to deposit an underlying ERC20 asset. The
Vault would then invest those underlying asset tokens into other yield-generating and
reward-earning ERC4626 vaults called Markets. The Vault allows for privileged roles to add and
remove Markets, and for unprivileged users to move funds in between different markets, for a fee.

Findings Summary

The table below summarizes the findings of the review, including type and severity details.

Severity Discovered Confirmed Fixed

Critical 1 1 1

High 1 1 1

Medium 3 3 2

Low 8 8 7

Informational 2 2 0

Total 15 15 11

Severity Matrix

Impact

High Medium High Critical

Medium Low Medium High

Low Low Low Medium

 Low Medium High

 Likelihood

​ 5

Detailed Findings

ID Title Severity Status

C-01 Funds could be permanently
lost due to a share price
inflation attack in ERC4626
markets

Critical Fixed

H-01 Permissionless skim() function
allows draining market tokens

High Fixed

M-01 Missing VaultIncentivesModule
initialization by
SiloVaultsFactory

Medium Fixed

M-02 The Incentive Module’s owner
can execute arbitrary code on
behalf of the Vault

Medium Fixed

M-03 Public Allocator could be DoS Medium Acknowledged

L-01 Factories using CREATE opcode
create contracts vulnerable to
reorgs

Low Fixed

L-02 Vault does not revoke its infinite
approval from removed markets

Low Fixed

L-03 Vault’s transfer and
transferFrom are not protected
for reentrancy

Low Fixed

​ 6

L-04 Insufficient gas for
PublicAllocator’s native fee
collection

Low Fixed

L-05 Fee Recipient could lose
rewards for newly generated
fees

Low Fixed

L-06 Vault could be vulnerable to an
inflation attack

Low Fixed

L-07 Faulty or malicious markets
could drain the Vault

Low Partially fixed

L-08 Removing an active Notification
Receiver could drain the
incentive program

Low Acknowledged

I-01 Rewards distribution consumes
a lot of gas

Info Acknowledged

I-02 Redundant setting of
withdrawn variable to 0

Info Acknowledged

​ 7

Critical Severity Issues

C-01 Funds could be permanently lost due to a share price inflation attack in
ERC4626 markets

Severity: Critical Impact: High Likelihood: High

Files:
SiloVault.sol
IdleVault.sol

Status: Fixed in 9f6a931

Description: As the markets themselves are ERC4626, a share inflation attack (first depositor) in
any of them may result in the vault being drained, as users can call the reallocateTo() or the
deposit() functions to constantly deposit into the vulnerable ERC4626 and lose funds.

The way the standard implementation of ERC4626 deals with a first depositor attack is by
making such an attack unprofitable for an attacker, which will discourage anyone from actually
inflating the share price. An attacker would need to invest a certain amount of funds in order to
inflate the price, and that amount must be greater than any loss caused due to rounding to any
future depositor.

The implied assumption is that the victim must be front-runned and will not repeat this deposit
more than once. This assumption does not actually hold true in our case because the attacker
has some control over the Silo Vault. He can control how many times the vault deposits into the
ERC4626 market, repeating this action as many times as he wants via the reallocateTo()
function in the PublicAllocator.sol contract which would cost the attacker some fees, or via the
deposit() function if the vulnerable market is the next market in the supplyQueue (This could be
forced by taking a large flashloan and filling up the caps of the markets ahead of it in the queue),
and controlling the amount that is being deposited (making it such that the rounding errors
would be most impactful).

While it would be best for an attacker if he would be able to inflate the share price in any regular
market (as he would be able to be a shareholder in that market and gain the funds that the Silo
Vault will lose), there’s no guarantee that it would be possible. However, the Idle Vault should

​ 8

https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/SiloVault.sol
https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/IdleVault.sol
https://github.com/silo-finance/silo-contracts-v2/pull/1131
https://blog.openzeppelin.com/a-novel-defense-against-erc4626-inflation-attacks

always be vulnerable to a share price inflation attack. It inherits from the standard ERC4626
implementation and it restricts anyone who isn't the Silo Vault from being a shareholder. In that
case, the attacker can forcibly make the Silo Vault withdraw the funds from there (if caps allow it)
and inflate the share price through a donation. After the inflation, the attacker can force the Silo
Vault to deposit funds into the Idle Vault that will be lost due to rounding, causing a permanent
loss of funds, as they will be owned by the “virtual user” in the Idle Vault.

Recommendations: Firstly, we would recommend adding a sanity check that whenever the Silo
Vault deposits funds into an ERC4626 market, the difference in Silo Vault-owned assets reported
by the market is not too different from the amount that was actually deposited. Secondly, we
would recommend setting the _decimalsOffset() in the Idle Vault to be very large (say, 18). This
would make the amount that the user would need to "gift" the market in order to significantly
inflate the share price very large and impractical.

Lastly, we would also recommend making a design change and cap the amounts that could be
deposited (decrease back when funds are withdrawn) into each market (and not just the amount
that it currently holds on the Silo Vault's behalf). This could limit any damage to the Silo Vault
that could occur as a result of a faulty market.

Customer’s response: Fixed in 9f6a931.

Fix Review: Issue fixed. Note that an inflation of a market’s share price beyond the threshold may
result in the entire transaction reverting rather than just skipping the market.

​ 9

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol#L279
https://github.com/silo-finance/silo-contracts-v2/pull/1131

JavaScript

High Severity Issues

H-01 Permissionless skim() function allows draining market tokens

Severity: High Impact: High Likelihood: Medium

Files:
SiloVault.sol

Status: Fixed in 64f76ca Violated property: P-08

Description: The skim() function in SiloVault can be used to transfer ERC-20 assets held by
the SiloVault contract to a predefined skimRecipient. While it’s true that SiloVault doesn’t
directly hold any assets because all deposits are immediately routed to the markets, the market
shares minted in exchange for these deposits can be seen as ERC-20 assets, because ERC-4626
markets have an ERC-20 sub-interface.

File: SiloVault.sol
492: /// @inheritdoc ISiloVaultBase
493: function skim(address _token) external virtual {
494: if (skimRecipient == address(0)) revert ErrorsLib.ZeroAddress();
495:
496: uint256 amount = _ERC20BalanceOf(_token, address(this));
497:
498: IERC20(_token).safeTransfer(skimRecipient, amount);
499:
500: emit EventsLib.Skim(_msgSender(), _token, amount);
501: }

Exploit Scenario: It is possible for anyone to use the skim() function to move market share
balance away from the Vault with the effect of deflating the Vault’s asset supply, which would
deflate the Vault’s share price and allow anyone to mint a very large amount of shares at a
discount, practically nullifying the value of the pre-existing shares. If the skimRecipient sends
the markets’ shares back to Vault, the attacker would then be able to withdraw his over-minted
shares and drain the returned assets from the Vault. Even if the skimRecipient doesn’t send the

​ 10

https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/SiloVault.sol
https://github.com/silo-finance/silo-contracts-v2/pull/1027

funds back, the attacker could permanently DoS the Vault by deflating the share price. When all
the assets have been removed from the Vault, new deposits would mint more shares than the
previous totalSupply() of shares. By repeating this process, the attacker could further deflate
the share price, making it such that type(uint256).max shares would be worth 1 asset, at which
point the Vault will be permanently bricked.

Recommendations: Make the skim() function permissioned and/or prevent its call with any
_token that is present in the Vault’s supplyQueue or withdrawQueue.

Customer’s response: Fixed in 64f76ca.

Fix Review: Issue fixed.

​ 11

https://github.com/silo-finance/silo-contracts-v2/pull/1027

JavaScript

Medium Severity Issues

M-01 Missing VaultIncentivesModule initialization by SiloVaultsFactory

Severity: Medium Impact: Low Likelihood: High

Files:
SiloVaultsFactory.sol

Status: Fixed in b0cb7a8

Description: When creating a SiloVault, SiloVaultsFactory also creates a
VaultIncentivesModule by cloning a pre-existing instance used as implementation. The newly
created VaultIncentivesModule is a proxy that was not initialized, in particular on its owner
storage slot.

File: SiloVaultsFactory.sol
34: /// @inheritdoc ISiloVaultsFactory
35: function createSiloVault(
36: address initialOwner,
37: uint256 initialTimelock,
38: address asset,
39: string memory name,
40: string memory symbol
41:) external virtual returns (ISiloVault siloVault) {
42: VaultIncentivesModule vaultIncentivesModule = VaultIncentivesModule(
43: Clones.clone(VAULT_INCENTIVES_MODULE_IMPLEMENTATION)
44:);
45:
46: siloVault = ISiloVault(address(
47: new SiloVault(initialOwner, initialTimelock, vaultIncentivesModule, asset,
name, symbol))
48:);
49:
50: isSiloVault[address(siloVault)] = true;
51:
52: emit EventsLib.CreateSiloVault(

​ 12

https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/SiloVaultsFactory.sol
https://github.com/silo-finance/silo-contracts-v2/pull/1029

53: address(siloVault), msg.sender, initialOwner, initialTimelock, asset, name,
symbol
54:);
55: }

Exploit Scenario: VaultIncentivesModule instances created through the SiloVaults factory
are unusable because they come with no owner.

Recommendations: Add an initializer function to VaultIncentivesModule that could be called
after cloning.

Customer’s response: Fixed in b0cb7a8.

Fix Review: Issue fixed.

​ 13

https://github.com/silo-finance/silo-contracts-v2/pull/1029

JavaScript

M-02 The Incentive Module’s owner can execute arbitrary code on behalf of the
Vault

Severity: Medium Impact: High Likelihood: Low

Files:
SiloVault.sol
VaultIncentivesModule
.sol

Status: Fixed in e1052c3

Description: When the function _claimRewards() is being called, the Vault delegatecalls the
addresses in the logics[] array:

 function _claimRewards() internal virtual {
 address[] memory logics = INCENTIVES_MODULE.getAllIncentivesClaimingLogics();
 bytes memory data =
abi.encodeWithSelector(IIncentivesClaimingLogic.claimRewardsAndDistribute.selector);

 for (uint256 i; i < logics.length; i++) {
 (bool success,) = logics[i].delegatecall(data);
 if (!success) revert ErrorsLib.ClaimRewardsFailed();
 }
 }

However, those addresses come from the Incentive Module and are controlled by the Incentive
Module's owner (which is presumably the same one as the Vault's owner) via the
addIncentivesClaimingLogic() function in VaultIncentivesModule.sol.

According to the design of the protocol, the Owner should not have unlimited power, and he
should be restricted both by the code itself and by the Vault’s guardian, which is supposed to
have the power to restrict the Owner from performing certain actions.

​ 14

https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/SiloVault.sol
https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/incentives/VaultIncentivesModule.sol
https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/incentives/VaultIncentivesModule.sol
https://github.com/silo-finance/silo-contracts-v2/pull/1092

Exploit Scenario: A malicious Owner of the Incentive Module can deploy a contract that features
the claimRewardsAndDistribute() function with arbitrary logic, add that contract as one of the
addresses in the logics[] array and execute whatever he wants unopposed.

Recommendations: Change the Incentive Module to be more consistent with the design of the
Vault and add a Guardian and a timelock. That way, there would be at least some restriction on
the power of the owner.

Customer’s response: Fixed in e1052c3.

Fix Review: Issue fixed.

​ 15

https://github.com/silo-finance/silo-contracts-v2/pull/1092

M-03 Public Allocator could be DoS

Severity: Medium Impact: Medium Likelihood: Medium

Files:
SiloVault.sol
PublicAllocator.sol

Status: Acknowledged

Description: Users can move funds between markets through two different mechanisms. One
is by depositing and withdrawing from the Vault, and the other is through the public allocator
(an action which costs fees). The existence of both of these mechanisms simultaneously
enables all sorts of DoS and griefing attacks. For example, a user could pay the required fee and
call the public allocator in order to move funds from one market to another. A different user
could then immediately ruin this allocation by either calling the Public Allocator again (and also
paying fees), or by depositing and withdrawing a large amount (for example by taking a
flashloan), which would change the allocation according to the Supply and the Withdraw
queues.

Similarly, a user could DoS the allocation to certain markets using the Public Allocator by filling
the flowCaps. For example, a user could target a certain market and transfer the maximal
possible amount to it. After the flowCap has been reached, the user can move those funds out
(again, by depositing and withdrawing a large amount, which would move the funds back to the
“natural” allocation), which would DoS any future attempt to move those funds back again into
that market using the Public allocator.

Recommendations: The existence of two separate mechanisms to move funds in between
markets could result in them interfering with each other. Assess whether or not this is an
acceptable risk and consider making a design change.

In the context of the Public Allocator, we would also recommend allowing users to specify
withdrawal.amount = type(uint256).max as a convention to move the maximum amount,
which might prevent some unintended DoS occurring as a result of several users interacting with
the protocol simultaneously.

​ 16

https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/SiloVault.sol
https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/PublicAllocator.sol

Customer’s response: We can remove the public allocator at any point and we can change the
fee at any point without a timelock. Risk accepted.

​ 17

JavaScript

Low Severity Issues

L-01 Factories using CREATE opcode create contracts vulnerable to reorgs

Severity: Low Impact: Medium Likelihood: Low

Files:
SiloVaultsFactory.sol
SiloIncentivesControlle
rCLFactory.sol

Status: Fixed in aadcad1

Description: Both factories in scope SiloIncentivesControllerCLFactory and
SiloVaultFactory, create contracts using the CREATE opcode. This is an opcode that is
especially insecure for factories that permissionlessly create contracts that hold assets, because
frontrunning attacks and/or reorgs can divert funds to contracts other than the intended ones.

File: SiloVaultsFactory.sol
42: VaultIncentivesModule vaultIncentivesModule = VaultIncentivesModule(
43: Clones.clone(VAULT_INCENTIVES_MODULE_IMPLEMENTATION)
44:);
45:
46: siloVault = ISiloVault(address(
47: new SiloVault(initialOwner, initialTimelock, vaultIncentivesModule, asset,
name, symbol))
48:);

File: SiloIncentivesControllerCLFactory.sol
16: logic = new SiloIncentivesControllerCL(_vaultIncentivesController,
_siloIncentivesController);

Exploit Scenario: Alice sends two transactions to the mempool, one to create a vault, and
another one to fund it with its own assets at its expected address A. Bob observes these two
transactions and frontruns Alice’s creation transaction. Bob’s SiloVault will be created at address

​ 18

https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/SiloVaultsFactory.sol
https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/incentives/claiming-logics/SiloIncentivesControllerCLFactory.sol
https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/incentives/claiming-logics/SiloIncentivesControllerCLFactory.sol
https://github.com/silo-finance/silo-contracts-v2/pull/1052

A, Alice’s will be created at address B, but Alice’s second transaction will fund Bob’s vault instead
of hers.

Recommendations: Consider using CREATE2 with a deterministic salt ideally dependent on the
Vault’s owner.

Customer’s response: Fixed in aadcad1.

Fix Review: Issue fixed.

​ 19

https://github.com/silo-finance/silo-contracts-v2/pull/1052

JavaScript

L-02 Vault does not revoke its infinite approval from removed markets

Severity: Low Impact: Low Likelihood: Low

Files:
SiloVault.sol

Status: Fixed in 5bca45d Violated property: P-08

Description: When ERC4626 markets are registered on the Vault, an approval of an infinite
amount of the asset token is granted to the added markets. This approval is however not revoked
when markets are removed.

File: SiloVault.sol
338: if (!seen[i]) {
339: IERC4626 market = withdrawQueue[i];
340:
341: if (config[market].cap != 0) revert
ErrorsLib.InvalidMarketRemovalNonZeroCap(market);
342: if (pendingCap[market].validAt != 0) revert
ErrorsLib.PendingCap(market);
343:
344: if (_ERC20BalanceOf(address(market), address(this)) != 0) {
345: if (config[market].removableAt == 0) revert
ErrorsLib.InvalidMarketRemovalNonZeroSupply(market);
346:
347: if (block.timestamp < config[market].removableAt) {
348: revert ErrorsLib.InvalidMarketRemovalTimelockNotElapsed(market);
349: }
350: }
351:
352: delete config[market];

File: SiloVault.sol
808: // one time approval, so market can pull any amount of tokens from SiloVault in
a future
809: IERC20(asset()).forceApprove(address(_market), type(uint256).max);

​ 20

https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/SiloVault.sol
https://github.com/silo-finance/silo-contracts-v2/pull/1038

Exploit Scenario: We don’t foresee any likely exploit scenario for this finding.

Recommendations: Revoke asset approvals to markets when they are removed.

Customer’s response: Fixed in 5bca45d.

Fix Review: Issue fixed.

​ 21

https://github.com/silo-finance/silo-contracts-v2/pull/1038

JavaScript

L-03 Vault’s transfer and transferFrom are not protected for reentrancy

Severity: Low Impact: Medium Likelihood: Low

Files:
SiloVault.sol

Status: Fixed in d4a72f4

Description: The Vault’s _update() function overridden implementation performs several
external calls within the _claimRewards() and _afterTokenTransfer() internal calls.

File: SiloVault.sol
922: function _update(address _from, address _to, uint256 _value) internal virtual
override {

931: _claimRewards();
933: super._update(_from, _to, _value);
935: if (_value == 0) return;
937: _afterTokenTransfer(_from, _to, _value);
938: }

Among the external entry points that trigger an _update() internal call, we have transfer() and
transferFrom() that aren’t overridden from the contract’s ERC4626/ERC20 parents, and
therefore aren’t protected from reentrancy like mint(), deposit(), redeem(), withdraw() are.

Exploit Scenario: While an exploit scenario is somewhat unlikely due to the controlled nature of
the called contracts, we believe that there is a potential for using reentrancy to change the order
in which external calls to the downstream incentive claiming logic and INotificationReceiver
contracts are made.

Recommendations: Protect the transfer() and transferFrom() functions with reentrancy
guards.

Customer’s response: Fixed in d4a72f4.

​ 22

https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/SiloVault.sol
https://github.com/silo-finance/silo-contracts-v2/pull/1037
https://github.com/silo-finance/silo-contracts-v2/pull/1037

Fix Review: Issue fixed.

​ 23

JavaScript

JavaScript

L-04 Insufficient gas for PublicAllocator’s native fee collection

Severity: Low Impact: Medium Likelihood: Low

Files:
PublicAllocator.sol

Status: Fixed in a7af71d

Description: The PublicAllocator contract allows withdrawing fees collected in native tokens
via the transferFee() function. This function sends the tokens to a provided feeRecipient
however using an unnecessarily strict transfer() call which limits the transfer gas to 2300. This
gas amount can be insufficient if feeRecipient is a contract.

File: PublicAllocator.sol
88: /// @inheritdoc IPublicAllocatorBase
89: function transferFee(ISiloVault vault, address payable feeRecipient) external virtual
onlyAdminOrVaultOwner(vault) {
90: uint256 claimed = accruedFee[vault];
91: accruedFee[vault] = 0;
92: feeRecipient.transfer(claimed);
93: emit EventsLib.TransferFee(msg.sender, vault, claimed, feeRecipient);
94: }

Exploit Scenario: The Gnosis multisig is a popular example for which the provided gas would not
suffice to complete the reception of native tokens.

Recommendations: Forward all available gas, for example via the call keyword:

feeRecipient.call{value: claimed}(“”)

Customer’s response: Fixed in a7af71d.

​ 24

https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/PublicAllocator.sol
https://github.com/silo-finance/silo-contracts-v2/pull/1036
https://github.com/silo-finance/silo-contracts-v2/pull/1036

Fix Review: Issue fixed.

​ 25

JavaScript

L-05 Fee Recipient could lose rewards for newly generated fees

Severity: Low Impact: Low Likelihood: Medium

Files:
SiloVault.sol

Status: Fixed in 6a5f76a

Description: There is an inconsistency in the way the Vault treats the rewards that were
generated since the last time the Vault was updated.

If a user mints, redeems or transfers shares, the _accrueFee() function is being called before
_claimRewards(). As _accrueFee()mints some amount of shares for the Fee Recipient, this
means that Fee Recipient will receive a larger share of the newly generated rewards than he
would if fees were not accrued first.

However, rewards generated since the last update could also be claimed by calling the
claimRewards() function, but this function does not accrue fees and therefore does not mint
new shares to the Fee Recipient before the generated rewards are distributed.

 function claimRewards() public virtual {
 _nonReentrantOn();

 _claimRewards();

 _nonReentrantOff();
 }

The implication is that whenever claimRewards() would be called, the Fee Recipient would earn
slightly less rewards.

​ 26

https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/SiloVault.sol
https://github.com/silo-finance/silo-contracts-v2/pull/1035

JavaScript

Recommendations: The claimRewards() function could be modified to accrue fees before the
rewards are being distributed.

 function claimRewards() public virtual {
 _nonReentrantOn();

 _updateLastTotalAssets(_accrueFee());

 _claimRewards();

 _nonReentrantOff();
 }

Customer’s response: Fixed in 6a5f76a.

Fix Review: Issue fixed.

​ 27

https://github.com/silo-finance/silo-contracts-v2/pull/1035

JavaScript

L-06 Vault could be vulnerable to an inflation attack

Severity: Low Impact: Medium Likelihood: Low

Files:
SiloVault.sol

Status: Fixed in 5d9a39e

Description: Silo Vault inherits from the standard Open-Zeppelin implementation of ERC4626,
which uses the _decimalsOffset() to determine the initial shares to assets ratio of the vault.

As stated before, the standard implementation deals with an inflation attack (first depositor
attack) by disincentivizing users from inflating the share price, as this would cost the attacker
more than what any one victim would lose in a single deposit due to rounding.

However, if _decimalsOffset() is set to 0, this would be a tight bound, meaning that this attack
could be profitable for an attacker even if there would be only two later deposits that will lose
funds due to rounding.

In the case of the Silo Vault, the _decimalsOffset() would be 0 for any asset that has at least 18
decimals.

DECIMALS_OFFSET = uint8(UtilsLib.zeroFloorSub(18, IERC20Metadata(_asset).decimals()));

Recommendations: Increase _decimalsOffset() for all assets, which would exponentially
increase the ratio between the amount that an attacker would need to invest to inflate the share
price and the maximal amount that any victim would lose in a single deposit.

Customer’s response: Fixed in 5d9a39e.

Fix Review: Issue fixed.

​ 28

https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/SiloVault.sol
https://github.com/silo-finance/silo-contracts-v2/pull/1032
https://github.com/silo-finance/silo-contracts-v2/pull/1032

L-07 Faulty or malicious markets could drain the Vault

Severity: Low Impact: Medium Likelihood: Low

Files:
SiloVault.sol

Status: Fixed in 08a3bf3

Description: Markets report the amount of assets they currently hold on behalf of the Vault. As
the Vault imposes the market’s cap on the amount that the market currently holds (and not on
the amount that was actually deposited), it means that any faulty market could lead to the vault
being drained, as there would not be any limitations on moving more funds into the market.​
A malicious market could also falsely report that it holds a large amount of assets, which would
lead to an inflation of the vault’s share price and to the possible draining of vault’s funds invested
in other markets.

Recommendations: Be aware of the dangers of adding a faulty or a malicious market. Consider
capping the amounts that could be deposited into each market to deal with a faulty market, and
perhaps even capping the markets’ maximal reported revenue for a period of time to deal with a
malicious market that attempts to inflate the vault’s share price, if that’s a concern.

Customer’s response: Fixed in 08a3bf3.

Fix Review: Issue partially fixed. A malicious market can still report an incorrect amount to
reduce balanceTracker[] if the priviliged syncBalanceTracker() function is being called
without the override flag, and can still report a very large amount in previewRedeem() to
manipulate totalAssets() and withdraw more than his fair share in Silo Vault. That risk was
accepted by the client.

​ 29

https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/SiloVault.sol
https://github.com/silo-finance/silo-contracts-v2/pull/1157
https://github.com/silo-finance/silo-contracts-v2/pull/1157

L-08 Removing an active Notification Receiver could drain the incentive program

Severity: Low Impact: Medium Likelihood: Low

Files:
VaultIncentivesModule
.sol
SiloVault.sol

Status: Acknowledged

Description: Removing a Notification Receiver from the Incentive Module would allow users to
transfer their shareToken without updating the state of the incentive program. As the accrued
rewards are proportional to the amount of shareToken held by the users, it would be possible to
transfer a large amount of shareToken from one address to the other without updating the state,
claiming a large amount of rewards on behalf of a different address each time.

Recommendations: Be careful when you remove a Notification Receiver from the Incentive
Module.

Customer’s response: Risk accepted.

​ 30

https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/incentives/VaultIncentivesModule.sol
https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/incentives/VaultIncentivesModule.sol
https://github.com/silo-finance/silo-contracts-v2/blob/8ec7238dded1b17783f65b0b4e45c101c3149a8b/silo-vaults/contracts/SiloVault.sol

Informational Severity Issues

I-01. Rewards distribution consumes a lot of gas

Description: The _claimRewards() function is being called frequently (every time the _update()
function is being called) and it may consume a lot of gas. It iterates over all the claiming logics of
every market, claiming rewards from those markets and distributing them back to the users
through the Vault’s own incentive program.

Recommendation: Consider adding a _lastUpdated variable in the Vault to keep track of the
last time rewards were distributed. If rewards have already been distributed in the current block,
no new rewards should be distributed and therefore the rewards distribution code could be
skipped.​
Another improvement that could be considered is to optimize the amount of times that
immediateDistribution() is being called. Currently, the same rewardToken could be
distributed many times in the same transaction, once for each claiming logic. If instead the
distribution process would only happen after all the rewards from all the markets have been
claimed, it would be possible to only distribute the rewards once for each rewardToken.

Customer’s response: Risk accepted.

​ 31

I-02. Redundant setting of withdrawn variable to 0

Description: The withdrawn variable in SiloVault.sol line 383 is being set to 0, but this
appears to be redundant. The new value of withdrawn is only being used if the supplyShares
variable is 0, but then the supplyAssets variable should also be 0 and therefore the withdrawn
variable should be set to 0 in line 374.

Recommendation: Consider removing this line.

Customer’s response: Risk accepted.

​ 32

Formal Verification
Verification Notations

Formally Verified
The rule is verified for every state of the
contract(s), under the assumptions of the
scope/requirements in the rule.

Formally Verified After Fix
The rule was violated due to an issue in the
code and was successfully verified after
fixing the issue

Violated
A counter-example exists that violates one
of the assertions of the rule.

General Assumptions and Simplifications

1.​ We work with objects inherited from the original contracts that we call harnesses. In the
inherited objects we add more view methods, flags, etc. In cases where it was not possible
to collect the required information via the inherited object.

2.​ We replaced some functions with equivalent CVL implementations. Notably mulDiv,
safeTransfer and safeTransferFrom. This speeds up the verification process and doesn’t
affect the results.

3.​ We assume that loops are not iterated through more than two times.

​ 33

Formal Verification Properties

Module General Assumptions

We introduced two more mappings to the SiloVault contract:
○​ mapping(address => uint256) public withdrawRank
○​ mapping(address => uint256) public deletedAt

We also modify some of its methods to correctly maintain these. These changes don’t affect the
original functionality of the contract and help us to verify rules about the withdrawQueue.

Module Properties

​ 34

P-01. Reachable states are consistent

Status: Verified

Rule Name Status Description Link to rule report

noFeeToUnsetFeeRe
cipient

Verified If feeRecepient is not set then fee() returns zero. Run link

supplyCapIsEnabled Verified If the market has a cap greater than 0 then it is
enabled.

Run link

pendingSupplyCapH
asConsistentAsset

Verified If the market has a pending cap then its token is the
same as the asset of the vault.

Run link

enabledHasConsiste
ntAsset

Verified If the market is enabled then its token is the same as
the asset of the vault.

Run link

supplyCapIsNotMark
edForRemoval

Verified If the market has a non-zero supply cap then it's not
marked for removal. (I.e., removableAt == 0}

Run link

notEnabledIsNotMark
edForRemoval

Verified If the market is enabled then it's not marked for
removal. (I.e., removableAt == 0}

Run link

https://prover.certora.com/output/6893/5fc0b1c45aaf4a9fafac92416459b9cc/?anonymousKey=c258a9aa86355ca0226a4b89512cabb9e0aa3444
https://prover.certora.com/output/6893/6240be1c7060418386a9bb15f63b3ff0/?anonymousKey=602028e34a6c8f6c236569dbacc51277af2bb506
https://prover.certora.com/output/6893/5fc0b1c45aaf4a9fafac92416459b9cc/?anonymousKey=c258a9aa86355ca0226a4b89512cabb9e0aa3444
https://prover.certora.com/output/6893/5fc0b1c45aaf4a9fafac92416459b9cc/?anonymousKey=c258a9aa86355ca0226a4b89512cabb9e0aa3444
https://prover.certora.com/output/6893/5fc0b1c45aaf4a9fafac92416459b9cc/?anonymousKey=c258a9aa86355ca0226a4b89512cabb9e0aa3444
https://prover.certora.com/output/6893/5fc0b1c45aaf4a9fafac92416459b9cc/?anonymousKey=c258a9aa86355ca0226a4b89512cabb9e0aa3444

​ 35

pendingCapIsNotMar
kedForRemoval

Verified If the market has a pending cap then it's not marked
for removal. (I.e., removableAt == 0}

Run link

newSupplyQueueEns
uresPositiveCap

Verified Method SetSupplyQueue can only add markets with
non-zero caps.

Run link

P-02. Contract variables stay within allowed ranges

Status: Verified

Rule Name Status Description Link to rule report

pendingTimelockI
nRange

Verified pendingTimelock_ is within minTimelock and
maxTimelock at all times.

Run link

timelockInRange Verified timelock is within minTimelock and maxTimelock
at all times.

Run link

feeInRange Verified fee is less than maxFee at all times. Run link

supplyQueueLen
gthInRange

Verified The length of SupplyQueue is less than
maxQueueLength at all times.

Run link

withdrawQueueLe
ngthInRange

Verified The length of WithdrawQueue is less than
maxQueueLength at all times.

Run link

pendingCapIsUint
184

Verified pendingCap.value is never larger than 2^184. Run link

https://prover.certora.com/output/6893/5fc0b1c45aaf4a9fafac92416459b9cc/?anonymousKey=c258a9aa86355ca0226a4b89512cabb9e0aa3444
https://prover.certora.com/output/6893/06ab79d187974338be63befef2dded6a/?anonymousKey=181e9134c35976c9eff3bcf3649b602aff52d75a
https://prover.certora.com/output/6893/6cb08d9f2025487db5e946b51cca7b0e/?anonymousKey=a433d0a5ddf55cdc354fc38f5dab1a02045bd4ff
https://prover.certora.com/output/6893/6cb08d9f2025487db5e946b51cca7b0e/?anonymousKey=a433d0a5ddf55cdc354fc38f5dab1a02045bd4ff
https://prover.certora.com/output/6893/6cb08d9f2025487db5e946b51cca7b0e/?anonymousKey=a433d0a5ddf55cdc354fc38f5dab1a02045bd4ff
https://prover.certora.com/output/6893/6cb08d9f2025487db5e946b51cca7b0e/?anonymousKey=a433d0a5ddf55cdc354fc38f5dab1a02045bd4ff
https://prover.certora.com/output/6893/6cb08d9f2025487db5e946b51cca7b0e/?anonymousKey=a433d0a5ddf55cdc354fc38f5dab1a02045bd4ff
https://prover.certora.com/output/6893/6cb08d9f2025487db5e946b51cca7b0e/?anonymousKey=a433d0a5ddf55cdc354fc38f5dab1a02045bd4ff

​ 36

P-03. Pending values are consistent

Status: Verified

Rule Name Status Description Link to rule
report

noBadPending
Timelock

Verified pendingTimelock.validAt is zero if and only if the
pendingTimelock value is zero.

Run link

smallerPending
Timelock

Verified The pending timelock value is always strictly smaller
than the current timelock value.

Run link

noBadPending
Cap

Verified pendingCap.validAt is zero if and only if the
pendingCap value is zero.

Run link

greaterPending
Cap

Verified The pending cap value is either 0 or strictly greater than
the current cap value.

Run link

noBadPending
Guardian

Verified If pendingGuardian.validAt is zero then
pendingGuardian value is the zero address.

Run link

differentPendin
gGuardian

Verified The pending guardian is either the zero address or it is
different from the current guardian.

Run link

https://prover.certora.com/output/6893/475ae247a3484d82bccf7b8a866cc065/?anonymousKey=b10053fdeceed7fd138ef7ea7e4fcbc519d8e675
https://prover.certora.com/output/6893/475ae247a3484d82bccf7b8a866cc065/?anonymousKey=b10053fdeceed7fd138ef7ea7e4fcbc519d8e675
https://prover.certora.com/output/6893/475ae247a3484d82bccf7b8a866cc065/?anonymousKey=b10053fdeceed7fd138ef7ea7e4fcbc519d8e675
https://prover.certora.com/output/6893/475ae247a3484d82bccf7b8a866cc065/?anonymousKey=b10053fdeceed7fd138ef7ea7e4fcbc519d8e675
https://prover.certora.com/output/6893/475ae247a3484d82bccf7b8a866cc065/?anonymousKey=b10053fdeceed7fd138ef7ea7e4fcbc519d8e675
https://prover.certora.com/output/6893/475ae247a3484d82bccf7b8a866cc065/?anonymousKey=b10053fdeceed7fd138ef7ea7e4fcbc519d8e675

​ 37

P-04. Roles hierarchy

Status: Verified

Rule Name Status Description Link to rule
report

ownerIsGuardian Verified If the Guardian can perform an action then the Owner
can also perform it.

Run link

ownerIsCurator Verified If the Curator can perform an action then the Owner can
also perform it.

Run link

curatorIsAllocator Verified If the Allocator can perform an action then the Curator
can also perform it.

Run link

P-05. Methods update balances correctly

Status: Verified

Rule Name Status Description Link to rule
report

depositTokenChange Verified Depositing correctly updates balances of all involved
parties.

Run link

withdrawTokenChange Verified Withdrawing correctly updates balances of all involved
parties.

Run link

reallocateTokenChange Verified Calling reallocate doesn’t affect balances of SiloVault,
msg.sender or any market.

Run link

https://prover.certora.com/output/6893/50ff2b7abf6e43d58c553c31b192ab06/?anonymousKey=b072a89b766f554163c04c647fcb183c13cbc281
https://prover.certora.com/output/6893/50ff2b7abf6e43d58c553c31b192ab06/?anonymousKey=b072a89b766f554163c04c647fcb183c13cbc281
https://prover.certora.com/output/6893/50ff2b7abf6e43d58c553c31b192ab06/?anonymousKey=b072a89b766f554163c04c647fcb183c13cbc281
https://prover.certora.com/output/6893/24efedb704ff4413a234bf238a49ad35/?anonymousKey=d5e636e6105b4d9b936f4c002acaa36ee4c49dd2
https://prover.certora.com/output/6893/24efedb704ff4413a234bf238a49ad35/?anonymousKey=d5e636e6105b4d9b936f4c002acaa36ee4c49dd2
https://prover.certora.com/output/6893/24efedb704ff4413a234bf238a49ad35/?anonymousKey=d5e636e6105b4d9b936f4c002acaa36ee4c49dd2

​ 38

P-06. Timelocks work correctly

Status: Verified

Rule Name Status Description Link to rule
report

guardianUpdateTime

Verified No change of guardian can happen before the timelock. Run link

capIncreaseTime Verified No increase of cap can happen before the timelock. Run link

timelockDecreaseTime Verified No decrease of timelock can happen before the
timelock.

Run link

P-07. Consistency of Supply and Withdraw queues

Status: Verified

Rule Name Status Description Link to rule
report

enabledIsInWithdrawal
Queue

Verified If the market is enabled then it’s in the WithdrawQueue. Run link

inWithdrawQueueIsEna
bled

Verified If the market is in the WithdrawQueue then it is enabled. Run link

nonZeroCapHasPositiv
eRank

Verified If the market has a non-zero cap then it’s in the
WithdrawQueue.

Run link

distinctIdentifiers Verified There are no duplicate markets in the withdrawQueue.

Run link

https://prover.certora.com/output/6893/2d24593e02e84c86805ddb43e3b9bf07/?anonymousKey=205338df8bfbb5ef70b935bdcb00614ab90b8086
https://prover.certora.com/output/6893/2d24593e02e84c86805ddb43e3b9bf07/?anonymousKey=205338df8bfbb5ef70b935bdcb00614ab90b8086
https://prover.certora.com/output/6893/2d24593e02e84c86805ddb43e3b9bf07/?anonymousKey=205338df8bfbb5ef70b935bdcb00614ab90b8086
https://prover.certora.com/output/6893/5fc0b1c45aaf4a9fafac92416459b9cc/?anonymousKey=c258a9aa86355ca0226a4b89512cabb9e0aa3444
https://prover.certora.com/output/6893/d91cedb4d4d34f9fa34cad36d2db4ef9/?anonymousKey=a7ce9273664a10e7cf472b030e7a73e807a755a7
https://prover.certora.com/output/6893/aee2a19775af4b9d8f754cb806c55b64/?anonymousKey=e64519dcbbcb0f80791dc9afe115f910c6150d4c
https://prover.certora.com/output/6893/47fcf52d8bb345e4835e8d968cbf30ae/?anonymousKey=53723c1ce5d12d2204a7a012d7c3d4dffd39900a

​ 39

addedToSupplyQThenI
sInWithdrawQ

Verified If a market is added to the supplyQueue then it is
present in the withdrawQueue.

Run link

P-08. Risk assessment

Status: Verified after fix

Rule Name Status Description Link to rule
report

canPauseSupply Verified The allocator is able to pause supply by setting an
empty supplyQueue. After the pause, all deposits and
mints revert.

Run link

noDelegateCalls Verified No delegateCall happens, i.e. the contract is truly
immutable.

Run link

reentrancySafe Verified There are no untrusted external calls, ensuring notably
reentrancy safety.

Run link

noCapThenNoApproval Verified
after fix

If a market has zero cap then SiloVault does not have
approval of the asset token for it.

Run link

notInWithdrawQThenNo
Approval

Verified
after fix

If a market is not in the withdraw queue, then SiloVault
does not have approval of the asset token for it.​
Reported issue L-02.

Run link

onlySpecicifiedMethods
CanDecreaseMarketBala
nce

Verified
after fix

SiloVault's balance of market tokens can decrease only
via withdraw, redeem or reallocate calls. ​
Reported issue H-01.

Run link

https://prover.certora.com/output/6893/df94db8e27074610919d94d009ed9271/?anonymousKey=5f398878439e3963856bee239adf18fd170b6b2d
https://prover.certora.com/output/6893/f0baa17d4fb04a23b8d24809e75369e0/?anonymousKey=16606f1b552d1612f5bc4d6fd1bfd026f90ea750
https://prover.certora.com/output/6893/9e30eb583a14405d9a9292e07bdff4fb/?anonymousKey=3bcee1f206954743a5c7e484aae4acf822f88747
https://prover.certora.com/output/6893/bc5c7af57bc84c12aa64a78f90faa704/?anonymousKey=944cca4d5ce383bf69085071636bfa4fae879af5
https://prover.certora.com/output/6893/b6a9eff2cacf41feba0b6aeb777bdcef/?anonymousKey=16a74410cf609862e6abc04d386b6e920667f5c7
https://prover.certora.com/output/6893/b6a9eff2cacf41feba0b6aeb777bdcef/?anonymousKey=16a74410cf609862e6abc04d386b6e920667f5c7
https://prover.certora.com/output/6893/a8fa6d1d0f4c438bbd1583b37551a9d6/?anonymousKey=952fc53d52d95ac52868d827f2009805ce6b27f3

​ 40

P-09. Methods revert on incorrect inputs and don’t revert otherwise

Status: Verified

Rule Name Status Description Link to rule
report

setCuratorRevertCondition Verified setCurator reverts if and only if the specified
conditions occur.

Run link

setIsAllocatorRevertConditi
on

Verified setAllocator reverts if and only if the specified
conditions occur.

Run link

setSkimRecipientRevertCon
dition

Verified setSkimRecipient reverts if and only if the specified
conditions occur.

Run link

setFeeInputValidation Verified setFee reverts if the specified conditions occur. Run link

setFeeRecipientInputValidat
ion

Verified setFeeRecipient reverts if the specified conditions
occur.

Run link

submitGuardianRevertCond
ition

Verified submitGuardian reverts if and only if the specified
conditions occur.

Run link

submitCapRevertCondition Verified submitCap reverts if and only if the specified
conditions occur.

Run link

submitMarketRemovalRever
tCondition

Verified submitMarketRemoval reverts if and only if the
specified conditions occur.

Run link

setSupplyQueueInputValida
tion

Verified setSupplyQueue reverts if the specified conditions
occur.

Run link

updateWithdrawQueueInput
Validation

Verified updateWithdrawQueue reverts if the specified
conditions occur.

Run link

https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd

​ 41

reallocateInputValidation Verified reallocate reverts if the specified conditions occur. Run link

revokePendingTimelockRev
ertCondition

Verified revokePendingTimelock reverts if and only if the
specified conditions occur.

Run link

revokePendingGuardianRev
ertCondition

Verified revokePendingGuardian reverts if and only if the
specified conditions occur.

Run link

revokePendingCapRevertC
ondition

Verified revokePendingCap reverts if and only if the specified
conditions occur.

Run link

revokePendingCapRevertC
ondition

Verified revokePendingCap reverts if and only if the specified
conditions occur.

Run link

revokePendingMarketRemo
valRevertCondition

Verified revokePendingMarketRemoval reverts if and only if
the specified conditions occur.

Run link

acceptTimelockRevertCondi
tion

Verified acceptTimelock reverts if and only if the specified
conditions occur.

Run link

acceptGuardianRevertCond
ition

Verified acceptGuardian reverts if and only if the specified
conditions occur.

Run link

acceptCapInputValidation Verified acceptCap reverts if the specified conditions occur. Run link

skimRevertCondition Verified skim reverts if and only if the specified conditions
occur.

Run link

https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd
https://prover.certora.com/output/6893/263f06042b214754828ca7c5372c3fda/?anonymousKey=cd22cf32276c36cb20b92d509f5c96a5c89fb2dd

Mitigation Review
Project Scope

Project Name Repository (link)
Latest Commit
Hash

Platform

silo-vaults

https://github.com/silo-financ
e/silo-contracts-v2/tree/devel
op/silo-vaults/contracts

2a93015 EVM

Project Overview

This section describes issues that were discovered by the Certora team during the mitigation
review of silo-vaults following the changes that were made by the Silo team to address issues
that were found by the Certora team and other auditors. The work was undertaken from 5.3.25 to
22.4.25.

The following contract list was included in our scope:

contracts/SiloVault.sol
contracts/SiloVaultsFactory.sol
contracts/PublicAllocator.sol
contracts/IdleVault.sol​
contracts/IdleVaultsFactory.sol
contracts/libraries/ConstantsLib.sol
contracts/libraries/ErrorsLib.sol
contracts/libraries/EventsLib.sol
contracts/libraries/PendingLib.sol
contracts/libraries/SiloVaultActionsLib.sol
contracts/incentives/VaultIncentivesModule.sol
contracts/incentives/claiming-logics/SiloIncentivesControllerCL.sol
contracts/incentives/claiming-logics/SiloIncentivesControllerCLFactory.sol

​ 42

https://github.com/silo-finance/silo-contracts-v2/tree/develop/silo-vaults/contracts
https://github.com/silo-finance/silo-contracts-v2/tree/develop/silo-vaults/contracts
https://github.com/silo-finance/silo-contracts-v2/tree/develop/silo-vaults/contracts
https://github.com/silo-finance/silo-contracts-v2/commit/2a93015a286a977fd6f906ca557a75207423acdb

Findings Summary

The table below summarizes the findings of the review, including type and severity details.

Severity Discovered Confirmed Fixed

Critical 0 0 0

High 0 0 0

Medium 2 2 2

Low 1 1 0

Informational 3 3 0

Total 6 6 2

Severity Matrix

Impact

High Medium High Critical

Medium Low Medium High

Low Low Low Medium

 Low Medium High

 Likelihood

​ 43

Detailed Findings

ID Title Severity Status

M-01 Guardian can perform active
operations

Medium Fixed

M-02 Legitimate deposits into
markets could be skipped

Medium Fixed

L-01 First depositor could still
deflate the share price using
calls to reallocate

Low Acknowledged

I-01 Unnecessary assignment inside
of loop

Info Acknowledged

I-02 Off-by-one discrepancy with
validAt

Info Acknowledged

I-03 Residual unused code Info Acknowledged

​ 44

JavaScript

Medium Severity Issues

M-01 Guardian can perform active operations

Severity: Medium Impact: High Likelihood: Low

Files:
VaultIncentivesModule
.sol

Status: Fixed in e1052c3

Description: Functions like submitIncentivesClaimingLogic() and
removeIncentivesClaimingLogic() were set with a onlyGuardianRole modifier.​
This contradicts the general permission scheme which allows the Guardian to only revoke active
actions taken by the Owner and other privileged users.

File: SiloVaultsFactory.sol

53: function submitIncentivesClaimingLogic(
54: IERC4626 _market,
55: IIncentivesClaimingLogic _logic
56:) external virtual onlyGuardianRole {
57: require(address(_logic) != address(0), AddressZero());
58: require(!_claimingLogics[_market].contains(address(_logic)), LogicAlreadyAdded());
59: require(pendingClaimingLogics[_market][_logic] == 0, LogicAlreadyPending());
60:
61: uint256 timelock = vault.timelock();
62:
63: unchecked { pendingClaimingLogics[_market][_logic] = block.timestamp + timelock; }
64:
65: emit SubmitIncentivesClaimingLogic(_market, _logic);
66: }

88: function removeIncentivesClaimingLogic(IERC4626 _market, IIncentivesClaimingLogic
_logic)
89: external

​ 45

https://github.com/silo-finance/silo-contracts-v2/blob/7168ad4f8200f646a4fcb30a3d7487fd9fbf591b/silo-vaults/contracts/incentives/VaultIncentivesModule.sol
https://github.com/silo-finance/silo-contracts-v2/blob/7168ad4f8200f646a4fcb30a3d7487fd9fbf591b/silo-vaults/contracts/incentives/VaultIncentivesModule.sol
https://github.com/silo-finance/silo-contracts-v2/pull/1092/files

90: virtual
91: onlyGuardianRole
92: {
93: require(_claimingLogics[_market].contains(address(_logic)), LogicNotFound());
94:
95: _claimingLogics[_market].remove(address(_logic));
96:
97: if (_claimingLogics[_market].length() == 0) {
98: _markets.remove(address(_market));
99: }
100:
101: emit IncentivesClaimingLogicRemoved(_market, _logic);
102: }

Recommendations: Change the modifier of these functions to OnlyOwner.

Customer’s response: Fixed in e1052c3.

Fix Review: Issue fixed.

​ 46

https://github.com/silo-finance/silo-contracts-v2/pull/1092/files

JavaScript

M-02 Legitimate deposits into markets could be skipped

Severity: Medium Impact: Low Likelihood: High

Files:
SiloVault.sol

Status: Fixed in 39f1d3c

Description: In the realistic scenario where balanceTracker[market] is greater than
supplyAssets and the cap is large enough, the following holds:

newBalance = balanceTracker[market] + toSupply = supplyCap +
balanceTracker[market] - supplyAssets > supplyCap

Which means that nothing would be deposited into the market, and it will be skipped.

 function _supplyERC4626(uint256 _assets) internal virtual {
 uint256 length = supplyQueue.length;

 for (uint256 i; i < length; ++i) {
 IERC4626 market = supplyQueue[i];

 uint256 supplyCap = config[market].cap;
 if (supplyCap == 0) continue;

 // Update internal balance for market to include interest if any.
 // `supplyAssets` needs to be rounded up for `toSupply` to be rounded down.
 uint256 supplyAssets = _updateInternalBalanceForMarket(market);

 uint256 toSupply = UtilsLib.min(UtilsLib.zeroFloorSub(supplyCap, supplyAssets),
_assets);

 if (toSupply != 0) {
 uint256 newBalance = balanceTracker[market] + toSupply;
 // As `_supplyBalance` reads the balance directly from the market,
 // we have additional check to ensure that the market did not report wrong
supply.

​ 47

https://github.com/silo-finance/silo-contracts-v2/blob/0210551fe6f8cb08ee6fc7d3b6c8b3a73a7be096/silo-vaults/contracts/SiloVault.sol
https://github.com/silo-finance/silo-contracts-v2/pull/1163/files

 if (newBalance <= supplyCap) {
 // Using try/catch to skip markets that revert.
 try market.deposit(toSupply, address(this)) {
 _assets -= toSupply;
 balanceTracker[market] = newBalance;
 } catch {}
 }
 }

 if (_assets == 0) return;
 }

 if (_assets != 0) revert ErrorsLib.AllCapsReached();
 }

Recommendations: Change the way toSupply is calculated in a way that it will not be greater
from either UtilsLib.zeroFloorSub(supplyCap, balanceTracker[market]) or _assets.

Customer’s response: Fixed in 39f1d3c .

Fix Review: Issue fixed.

​ 48

https://github.com/silo-finance/silo-contracts-v2/pull/1163/files

Low Severity Issues

L-01 First depositor could still deflate the share price using calls to reallocate

Severity: Low Impact: Medium Likelihood: Low

Files:
SiloVault.sol

Status: Acknowledged

Description: This issue was originally discovered by Code4rena. The idea is that if a user is the
first depositor into an empty Silo Vault, that user can carefully deflate the share price by
repeatedly depositing 1 Wei of assets, which will be lost to rounding errors when the Silo Vault will
consequentially deposit that amount into the markets (0 shares will be minted to the Silo Vault).​
This issue was addressed in PR#1173 by eliminating the possibility of any deposit into a Market
that results in 0 shares being minted to Silo Vault.​
After a reevaluation, it was discovered that this fix may not mitigate the issue completely as it
might still be possible for the Silo Vault to “lose” some assets to roundings even when some
shares are being minted, and then to get rid of those shares by taking advantage of the
market.redeem() function call inside reallocate().

Recommendations: Implement a more robust solution than simply preventing 0 shares from
being minted or accept the risk, which appears to be mostly theoretical as there is no
economical incentive for an attacker.

Customer’s response: Risk accepted.

​ 49

https://github.com/silo-finance/silo-contracts-v2/blob/a06ea038df51a247ecc5a48f2d6025db8baf22d7/silo-vaults/contracts/SiloVault.sol
https://gist.github.com/itsmetechjay/ec122f7b89ca2c7923444d4316696320
https://github.com/silo-finance/silo-contracts-v2/pull/1173

JavaScript

JavaScript

Informational Severity Issues

I-01. Unnecessary assignment inside of loop

Description: the following assignments could be made outside of the loop for SLOAD gas
efficiency:​

File: SiloVault.sol
339: address asset = asset();

File: SiloVault.sol
876: address asset = asset();

Recommendation: Perform these assignments outside of the loops.

Customer’s response: Issue acknowledged.

​ 50

JavaScript

I-02. Off-by-one discrepancy with validAt

Description: There is a discrepancy in the way validAt is being used:

File: VaultIncentivesModule.sol
118: require(validAt != 0 && validAt <= block.timestamp, CantAcceptLogic());

167: require(validAt != 0 && validAt < block.timestamp, CantAcceptFactory());

Recommendation: Consider changing line 167 to allow timestamps that are exactly equal to
validAt.

Customer’s response: Issue acknowledged.

​ 51

JavaScript

I-03. Residual unused code

Description: the following function appears to not be used:

File: SiloVaultActionsLib.sol
154: function expectedSupplyAssets(IERC4626 _market, address _user) internal view returns
(uint256 assets) {
155: assets = previewRedeem(_market, ERC20BalanceOf(address(_market), _user));
156: }

Recommendation: Consider changing line 167 to allow timestamps that are exactly equal to
validAt.

Customer’s response: Issue acknowledged.

​ 52

Disclaimer

Even though we hope this information is helpful, we provide no warranty of any kind, explicit or
implied. The contents of this report should not be construed as a complete guarantee that the
contract is secure in all dimensions. In no event shall Certora or any of its employees be liable for
any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising
from, out of, or in connection with the results reported here.

About Certora

Certora is a Web3 security company that provides industry-leading formal verification tools and
smart contract audits. Certora’s flagship security product, Certora Prover, is a unique SaaS
product that automatically locates even the most rare & hard-to-find bugs on your smart
contracts or mathematically proves their absence. The Certora Prover plugs into your standard
deployment pipeline. It is helpful for smart contract developers and security researchers during
auditing and bug bounties.

Certora also provides services such as auditing, formal verification projects, and incident
response.

​ 53

	​
	Security Assessment &
	Formal Verification
	Final Report
	
	
	
	
	
	
	
	Project Summary
	Project Scope
	Project Overview
	Findings Summary
	Severity Matrix

	Detailed Findings
	Critical Severity Issues
	C-01 Funds could be permanently lost due to a share price inflation attack in ERC4626 markets
	
	High Severity Issues
	H-01 Permissionless skim() function allows draining market tokens
	Medium Severity Issues
	M-01 Missing VaultIncentivesModule initialization by SiloVaultsFactory
	M-02 The Incentive Module’s owner can execute arbitrary code on behalf of the Vault
	M-03 Public Allocator could be DoS
	Low Severity Issues
	L-01 Factories using CREATE opcode create contracts vulnerable to reorgs
	L-02 Vault does not revoke its infinite approval from removed markets
	L-03 Vault’s transfer and transferFrom are not protected for reentrancy
	L-04 Insufficient gas for PublicAllocator’s native fee collection
	L-05 Fee Recipient could lose rewards for newly generated fees
	L-06 Vault could be vulnerable to an inflation attack
	L-07 Faulty or malicious markets could drain the Vault
	L-08 Removing an active Notification Receiver could drain the incentive program
	Informational Severity Issues
	I-01. Rewards distribution consumes a lot of gas
	I-02. Redundant setting of withdrawn variable to 0

	Formal Verification
	Verification Notations
	General Assumptions and Simplifications
	Formal Verification Properties
	Module General Assumptions
	P-01. Reachable states are consistent
	P-02. Contract variables stay within allowed ranges
	P-03. Pending values are consistent
	P-04. Roles hierarchy
	P-05. Methods update balances correctly
	P-06. Timelocks work correctly
	P-07. Consistency of Supply and Withdraw queues
	P-08. Risk assessment
	P-09. Methods revert on incorrect inputs and don’t revert otherwise

	
	
	Mitigation Review
	Project Scope
	Project Overview
	Findings Summary
	Severity Matrix

	
	
	Detailed Findings
	
	Medium Severity Issues
	M-01 Guardian can perform active operations
	M-02 Legitimate deposits into markets could be skipped
	Low Severity Issues
	L-01 First depositor could still deflate the share price using calls to reallocate
	Informational Severity Issues
	I-01. Unnecessary assignment inside of loop
	I-02. Off-by-one discrepancy with validAt
	I-03. Residual unused code

	
	Disclaimer
	
	About Certora

