
Best-Efforts Security Review
Silo v2 Core

April 16, 2025

Contents

1. Summary
2. Engagement Overview
3. Risk Classification
4. Vulnerability Summary
5. Findings
6. Disclaimer

Summary

Enigma Dark
Enigma Dark is a web3 security firm leveraging the best talent in the space to secure all
kinds of blockchain protocols and decentralized apps. Our team comprises experts who
have honed their skills at some of the best auditing companies in the industry. With a
proven track record as highly skilled white-hats, they bring a wealth of experience and a
deep understanding of the technology and the ecosystem.

Learn more about us at enigmadark.com

Silo v2 Core
Silo V2 is a risk-isolated lending protocol designed to scale securely and permissionlessly.
Each lending market consists of two immutable Silos, one for each asset, ensuring
isolated risk and capital efficiency. Built for composability, Silo V2 enables anyone to
launch lending markets through the Silo Factory, providing a modular, permissionless, and
secure foundation for DeFi borrowing and lending.

Engagement Overview

Over the course of 1.5 weeks, beginning April 16 2025, the Enigma Dark team conducted
a comprehensive, best-effort final security review of the Silo v2 Core project.

This review focused on validating recent fixes and updates stemming from previous audits
and internal assessments, while also performing an in-depth pass over critical components
of the core codebase. The review was performed by two Lead Security Researchers:
vnmrtz & 0xWeiss, and one Security Researcher: kiki.

The following repositories were reviewed at the specified commits:

Repository Commit

silo-contracts-v2/silo-core c6eb7cc7cb8f5ed78f3cbe36a4a54558b32e3b34

1

https://www.enigmadark.com/

Risk Classification

Severity Description

Critical Vulnerabilities that lead to a loss of a significant portion of funds of the
system.

High Exploitable, causing loss or manipulation of assets or data.

Medium Risk of future exploits that may or may not impact the smart contract
execution.

Low Minor code errors that may or may not impact the smart contract
execution.

Informational Non-critical observations or suggestions for improving code quality,
readability, or best practices.

Vulnerability Summary

Severity Count Fixed Acknowledged

Critical 0 0 0

High 0 0 0

Medium 1 1 0

Low 5 2 3

Informational 0 0 0

breakline

2

Findings

Index Issue Title Status

M-01 maxWithdraw ignores fractional interest, potentially causing
DoS on full withdrawals Fixed

L-01
maxBorrow does not account for fractional interest,
potentially causing DoS when borrowing the maximum
amount

Fixed

L-02 Incorrect requirement when creating and updating
programs Acknowledged

L-03 Accruing rewards could run out of gas Acknowledged

L-04 Incorrect Liquidation Share Rounding Acknowledged

L-05 Dao Fee Revenue Can Be Redirected to Deployer Fixed

breakline

3

Detailed Findings

High Risk

No issues found.

Medium Risk

M-01 - maxWithdraw ignores fractional interest, potentially causing
DoS on full withdrawals

Severity: Medium Risk

Context:

Silo.sol#L228

Technical Details:
According to the invariant LENDING_INVARIANT_B: Result of maxWithdraw() used as
input to withdraw() should never revert , any call to withdraw using the return value
of maxWithdraw should always succeed. This ensures protocol availability for integrators
and users aiming to perform maximum withdraw operations, for example in a rebalance
kind of logic.

However, due to the maxWithdraw view function not accounting for the recently introduced
fractions logic, certain edge cases may cause the withdraw call to revert.

A proof-of-concept test reproducing this issue is available here.

Impact:
In certain protocol states, users and integrators attempting to withdraw the maximum
allowable amount might encounter reverts, reducing reliability and usability of the protocol
under those conditions, especially in lending protocols where withdrawals and repayments
must remain consistently available.

Recommendation:
Adjust the maxWithdraw view function to account for fractions logic. If incorporating full
support introduces excessive complexity, a more pragmatic solution would be to
underestimate the return value slightly. This ensures that calls relying on maxWithdraw
remain valid and protocol availability is preserved.

Developer Response:
Fixed at commits 983caba . Underestimating maxWithdraw to count for interest fractions.

4

https://github.com/silo-finance/silo-contracts-v2/blob/c6eb7cc7cb8f5ed78f3cbe36a4a54558b32e3b34/silo-core/contracts/Silo.sol#L228
https://github.com/silo-finance/silo-contracts-v2/blob/7d2e9fe017f377de5d0b06819e58b6fbcb868d34/silo-core/test/invariants/CryticToFoundry.t.sol#L124-L133

After commit 983caba the invariant suite has been run again to confirm the issue no
longer exists and LENDING_INVARIANT_B holds.

breakline

5

Low Risk

L-01 - maxBorrow does not account for fractional interest,
potentially causing DoS when borrowing the maximum amount

Severity: Low Risk

Context:

Silo.sol#L410

Technical Details:
According to the invariant BORROWING_HSPOST_F: User borrowing maxBorrow should
never revert , any call to borrow using the return value of maxBorrow should always
succeed. This ensures protocol availability for integrators and users aiming to perform
maximum borrow operations.

However, due to the maxBorrow view function not accounting for the recently introduced
fractions logic, certain edge cases may cause the borrow call to revert. Specifically, when
calculating fractions, it’s possible for totalDebtAssets to increase by 1. This, in turn, can
lead to a failure in the Loan-to-Value (LTV) check.

A proof-of-concept test reproducing this issue is available here.

Impact:
In certain protocol states, users and integrators attempting to borrow the maximum
allowable amount might encounter reverts, reducing reliability and usability of the protocol
under those conditions.

Recommendation:
Adjust the maxBorrow view function to account for fractions logic. If incorporating full
support introduces excessive complexity, a more pragmatic solution would be to
underestimate the return value slightly. This ensures that calls relying on maxBorrow
remain valid and protocol availability is preserved.

Developer Response:
Fixed at commits 15f345f , 3221567 . To avoid this, we underestimate assets. Having
fewer shares is acceptable because it underestimates the value due to missing fractions.
When recalculating assets (due to the issue described above), we want a lower share
price (which occurs when there are no fractions), as this leads to fewer assets and keeps
us within the LTV limit.

Therefore, we decrement _totalDebtAssets with _totalDebtAssets-- offset the earlier
_totalDebtAssets++ .

After commit 3221567 the invariant suite has been run again to confirm the issue no
6

https://github.com/silo-finance/silo-contracts-v2/blob/c6eb7cc7cb8f5ed78f3cbe36a4a54558b32e3b34/silo-core/contracts/Silo.sol#L410
https://github.com/silo-finance/silo-contracts-v2/blob/7d2e9fe017f377de5d0b06819e58b6fbcb868d34/silo-core/test/invariants/CryticToFoundry.t.sol#L135-L145

After commit 3221567 the invariant suite has been run again to confirm the issue no
longer exists.

L-02 - Incorrect requirement when creating and updating programs

Severity: Low Risk

Context:

BaseIncentivesController.sol#L46

Technical Details:

The createIncentivesProgram and the updateIncentivesProgram functions allow to
change the emissions per second, which they are capped at MAX_EMISSION_PER_SECOND .

The problem is that in both instances the emissionPerSecond is required to be smaller
than MAX_EMISSION_PER_SECOND while it should be smaller or equal. Normally, when using
bounds such as maximum values for uints the max value should be included in the
acceptable range for that uint:

 function
createIncentivesProgram(DistributionTypes.IncentivesProgramCreationInput
memory _incentivesProgramInput)
 external
 virtual
 onlyOwner
 {
 require(bytes(_incentivesProgramInput.name).length <= 32,
TooLongProgramName());
 require(_incentivesProgramInput.emissionPerSecond <
MAX_EMISSION_PER_SECOND, EmissionPerSecondTooHigh());
 require(_incentivesProgramInput.distributionEnd >= block.timestamp,
InvalidDistributionEnd());

Impact:

One off error.

Recommendation:

Update the following code:

7

https://github.com/silo-finance/silo-contracts-v2/blob/c6eb7cc7cb8f5ed78f3cbe36a4a54558b32e3b34/silo-core/contracts/incentives/base/BaseIncentivesController.sol#L46

 require(bytes(_incentivesProgramInput.name).length <= 32,
TooLongProgramName());
- require(_incentivesProgramInput.emissionPerSecond <
MAX_EMISSION_PER_SECOND, EmissionPerSecondTooHigh());
+ require(_incentivesProgramInput._emissionPerSecond <=
MAX_EMISSION_PER_SECOND, EmissionPerSecondTooHigh());
 require(_incentivesProgramInput.distributionEnd >= block.timestamp,
InvalidDistributionEnd());

 require(_distributionEnd >= block.timestamp,
InvalidDistributionEnd());
+ require(_emissionPerSecond <= MAX_EMISSION_PER_SECOND,
EmissionPerSecondTooHigh());
- require(_emissionPerSecond < MAX_EMISSION_PER_SECOND,
EmissionPerSecondTooHigh());

Developer Response: Acknowledged.

L-03 - Accruing rewards could run out of gas

Severity: Low Risk

Context:

BaseIncentivesController.sol#L46

Technical Details:

When creating an incentive program, the program is added to the
_incentivesProgramIds set, which is basically an array of all the programs that exist:

 function _createIncentiveProgram(
 bytes32 _programId,
 DistributionTypes.IncentivesProgramCreationInput memory
_incentivesProgramInput
) internal virtual {
 require(_incentivesProgramInput.rewardToken != address(0),
InvalidRewardToken());
 require(_incentivesProgramIds.add(_programId),
IncentivesProgramAlreadyExists());

When accruing rewards from a certain user it does loops through all the existing programs:

8

https://github.com/silo-finance/silo-contracts-v2/blob/c6eb7cc7cb8f5ed78f3cbe36a4a54558b32e3b34/silo-core/contracts/incentives/base/BaseIncentivesController.sol#L46

 function _accrueRewards(address _user)
 internal
 virtual
 returns (AccruedRewards[] memory accruedRewards)
 {
 accruedRewards = _accrueRewardsForPrograms(_user,
_incentivesProgramIds.values());
 }

In case there is a high enough number of programs, the accrual function could run out of
gas not allowing for the _accrueRewards function to work.

Impact:

DOS.

Recommendation:

Add a maximum amount of programs check inside the _createIncentiveProgram
function.

Developer Response: Acknowledged.

L-04 - Incorrect Liquidation Share Rounding

Severity: Low Risk

Context:

PartialLiquidation.sol#L217

Technical Details:
In the _callShareTokenForwardTransferNoChecks function of the PartialLiquidation
contract, the share calculation rounds the shares to liquidate in the wrong direction. When
converting the asset amount to shares, the rounding is specified to round towards the floor
— in other words, down.

Because of this, the borrower that is getting liquidated is consistently at an advantage
because they end up transferring a value of shares that are less than the value of assets
that the liquidator was supposed to receive.

Impact:
Liquidator receives fewer funds for liquidating than expected.

Recommendation:
Consider using Math.Rounding.Ceil for LIQUIDATE_TO_SHARES and be sure to compare
and take the smaller of the rounded-up value and the borrower’s total shares. This way,

9

https://github.com/silo-finance/silo-contracts-v2/blob/c6eb7cc7cb8f5ed78f3cbe36a4a54558b32e3b34/silo-core/contracts/utils/hook-receivers/liquidation/PartialLiquidation.sol#L217

the borrower is never expected to transfer more shares than they possess.

Developer Response:
Acknowledged. We’ve decided to save the borrower, as the liquidator still collects the fee.

L-05 - Dao Fee Revenue Can Be Redirected to Deployer

Severity: Low Risk

Context:

Actions.sol#L424-L480

Technical Details:
In the withdrawFees function of the Actions library, the fee distribution mechanism
contains a rounding vulnerability that allows a malicious deployer to significantly reduce or
eliminate the DAO's share of protocol fees through manipulation of the available liquidity.

The current implementation calculates the DAO's fee portion first, applying division that
results in rounding down. The deployer's portion is then derived as the remaining fees.
This approach creates a scenario where fee division inherently prioritizes the deployer
over the DAO.

This allows for any deployer of a silo with low decimals such as Gemini's GUSD to call the
'withdrawFees' while the available liquidity is low and cause the DAO's portion of the fees
to round down to zero, and the total amount of daoAndDeployerRevenue gets sent to the
deployer instead. The deployer can also leverage flash loans to further manipulate the
silo's available liquidity to consistently force the DAO's portion to round down.

Impact:
Protocol DAO revenue is redirected to the deployer.

Recommendation:
Consider prioritizing the DAO portion by either performing the division on the deployer
alternatively you can explicitly round the DAO portion up when performing the division.

Developer Response:
Fixed at commit a0124d2 .

breakline

10

https://github.com/silo-finance/silo-contracts-v2/blob/c6eb7cc7cb8f5ed78f3cbe36a4a54558b32e3b34/silo-core/contracts/lib/Actions.sol#L424-L480

Disclaimer

This report does not endorse or critique any specific project or team. It does not assess
the economic value or viability of any product or asset developed by parties engaging
Enigma Dark for security assessments. We do not provide warranties regarding the bug-
free nature of analyzed technology or make judgments on its business model, proprietors,
or legal compliance.

This report is not intended for investment decisions or project participation guidance.
Enigma Dark aims to improve code quality and mitigate risks associated with blockchain
technology and cryptographic tokens through rigorous assessments.

Blockchain technology and cryptographic assets inherently involve significant risks. Each
entity is responsible for conducting their own due diligence and maintaining security
measures. Our assessments aim to reduce vulnerabilities but do not guarantee the
security or functionality of the technologies analyzed.

This security engagement does not guarantee against a hack. It is a review of the
codebase during a specific period of time. Enigma Dark makes no warranties regarding
the security of the code and does not warrant that the code is free from defects. By
deploying or using the code, the project and users of the contracts agree to use the code
at their own risk. Any modifications to the code will require a new security review.

11

