
Silo Finance

Silo Vault
Security Assessment Report

Version: 2.0

March, 2025



Contents
Introduction 2Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Security Assessment Summary 3Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Coverage Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Findings Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Detailed Findings 5

Summary of Findings 6Missing owner Data In Cloned VaultIncentivesModule . . . . . . . . . . . . . . . . . . . . . . . . 7
skim() Function Allows Unintended Removal Of Share Tokens . . . . . . . . . . . . . . . . . . . 8Potential Market Manipulation Through reallocateTo() . . . . . . . . . . . . . . . . . . . . . . 9Possible Market Removal With Non-Zero Token Supply . . . . . . . . . . . . . . . . . . . . . . . 11Possibility Of Revert In _claimRewards() Due To Hitting Block Gas Limit . . . . . . . . . . . . . . 12Malicious Guardian Can Prevent Removal By Exploiting revokePendingGuardian() . . . . . . . . . 13Lack of Zero-Address Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Lack Of Upper Limit On _notificationReceiver May Lead To Expensive Token Transfers . . . . . 15Potential Excessive Cost For deposit() And withdraw() Operations . . . . . . . . . . . . . . . . 16Miscellaneous General Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A Test Suite 19

B Vulnerability Severity Classification 20

1



Silo Vault Introduction

Introduction

Sigma Primewas commercially engaged to perform a time-boxed security review of the Silo Finance components.The review focused solely on the security aspects of the Solidity implementation of the contract, though generalrecommendations and informational comments are also provided.

Disclaimer

Sigma Prime makes all effort but holds no responsibility for the findings of this security review. Sigma Primedoes not provide any guarantees relating to the function of the smart contract in scope. Sigma Prime makesno judgements on, or provides any security review, regarding the underlying business model or the individualsinvolved in the project.

Document Structure

The first section provides an overview of the functionality of the Silo Finance components contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilitiesis then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-plications (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Silo Finance components in scope.

Overview

The Silo Project is a collection of smart contracts designed for decentralised lending and asset management. Itsprimary goal is to allow users to deposit tokens into isolated “silos”, which minimise the cross-contamination ofrisk across multiple markets. By keeping different assets and their associated liabilities separate, the Silo systemaims to provide safer and more efficient lending and borrowing strategies.
The SiloVault is a core contract within this system, responsible for managing deposits and withdrawals, han-dling reward claims, and securely interacting with external contracts. It acts as a specialised vault that holds userfunds and orchestrates various operations, such as claiming rewards from incentive programs, while enforcingimportant constraints like reentrancy protection. By simulating withdrawals and carefully distributing rewards,the SiloVault supports safe asset transfers and maintains the integrity of the overall Silo lending framework.

Page | 2



Silo Vault Security Assessment Summary

Security Assessment Summary

Scope

The review was conducted on the files hosted on the Silo Finance repository.
The scope of this time-boxed review was strictly limited to the following files at commit 5549ca2:

• IdleVault.sol

• PublicAllocator.sol

• SiloVault.sol

• SiloVaultsFactory.sol

• ConstantsLib.sol

• ErrorsLib.sol

• EventsLib.sol

• PendingLib.sol

• VaultIncentivesModule.sol

• SiloIncentivesControllerCL.sol

• SiloIncentivesControllerCLFactory.sol

• SiloVaultsContracts.sol

• IIncentivesClaimingLogic.sol

• INotificationReceiver.sol

• IPublicAllocator.sol

• ISiloIncentivesControllerCLFactory.sol

• ISiloVault.sol

• ISiloVaultsFactory.sol

• IVaultIncentivesModule.sol

Note: third party libraries and dependencies were excluded from the scope of this assessment.

Approach

The security assessment covered components written in Solidity.
The manual review focused on identifying issues associated with the business logic implementation of the con-tracts. This includes their internal interactions, intended functionality and correct implementation with respectto the underlying functionality of the Ethereum Virtual Machine (for example, verifying correct storage/memorylayout).
Additionally, the manual review process focused on identifying vulnerabilities related to known Solidity anti-patterns and attack vectors, such as re-entrancy, front-running, integer overflow/underflow and correct visibilityspecifiers.
For a more detailed, but non-exhaustive list of examined vectors, see [1, 2].
To support the Solidity components of the review, the testing team also utilised the following automated testingtools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya
• Aderyn: https://github.com/Cyfrin/aderyn

Page | 3

https://github.com/silo-finance/silo-contracts-v2
https://github.com/silo-finance/silo-contracts-v2/commit/5549ca2f9c8c6197d11bce08b2d5f68b3dc1ebaf
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya
https://github.com/Cyfrin/aderyn


Silo Vault Coverage Limitations

Output for these automated tools is available upon request.

Coverage Limitations

Due to the time-boxed nature of this review, all documented vulnerabilities reflect best effort within the allotted,limited engagement time. As such, Sigma Prime recommends to further investigate areas of the code, and anyrelated functionality, where majority of critical and high risk vulnerabilities were identified.

Findings Summary

The testing team identified a total of 10 issues during this assessment. Categorised by their severity:
• Critical: 1 issue.
• High: 1 issue.
• Medium: 2 issues.
• Low: 2 issues.
• Informational: 4 issues.

Page | 4



Silo Vault Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Silo Finance componentsin scope. Each vulnerability has a severity classification which is determined from the likelihood and impact ofeach issue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 5



Summary of Findings

ID Description Severity Status
SILV-01 Missing owner Data In Cloned VaultIncentivesModule Critical Resolved

SILV-02 skim() Function Allows Unintended Removal Of Share Tokens High Resolved

SILV-03 Potential Market Manipulation Through reallocateTo() Medium Closed

SILV-04 Possible Market Removal With Non-Zero Token Supply Medium Closed

SILV-05 Possibility Of Revert In _claimRewards()Due To Hitting Block Gas Limit Low Closed

SILV-06 Malicious Guardian Can Prevent Removal By Exploiting
revokePendingGuardian() Low Closed

SILV-07 Lack of Zero-Address Checks Informational Resolved

SILV-08 Lack Of Upper Limit On _notificationReceiverMay Lead To ExpensiveToken Transfers Informational Closed

SILV-09 Potential Excessive Cost For deposit() And withdraw() Operations Informational Closed

SILV-10 Miscellaneous General Comments Informational Closed

6



Silo Vault Detailed Findings

SILV-01 Missing owner Data In Cloned VaultIncentivesModule

Asset SiloVaultsFactory.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

The createSiloVault() function clones an implementation contract of VaultIncentivesModule , where the construc-tor initialises the owner data. However, in the cloned contract, the owner data is not accessible.
As a result, all functions with the onlyOwner modifier in the cloned VaultIncentivesModule become unusable, includ-
ing the core function addIncentivesClaimingLogic() .

Recommendations

Implement an initialisation function to set the owner address in the cloned contract.
This function should be called immediately after the contract is cloned.

Resolution

The Silo teamhas addressed this issue by implementing the _VaultIncentivesModule_init() function to set the owneraddress in the cloned contract.
This issue has been resolved in PR #1029.

Page | 7

https://github.com/silo-finance/silo-contracts-v2/pull/1029


Silo Vault Detailed Findings

SILV-02 skim() Function Allows Unintended Removal Of Share Tokens
Asset SiloVault.sol

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

The skim() function’s implementation does not prevent share tokens, which should not be removed from SiloVault ,
from being transferred to the skimRecipient address. As a result, the internal accounting of shares can become inac-curate.
The skim() function allows administrators to remove tokens that have accidentally ended up in the SiloVault con-
tract. This function is generally safe for anyone to call as the tokens are transferred to the predefined skimRecipientaddress, however, share tokens should be excluded from this process.
An attacker could exploit this by repeatedly calling the function to disrupt the operation of SiloVault , particularly ifsystem administrators attempt to rectify the issue by returning share tokens from the skimRecipient to SiloVault .

Recommendations

Modify implementation of the skim() function to explicitly exclude share tokens from the skimming process.

Resolution

The Silo team has address this issue by removing the skim() function from the SiloVault contract.
This issue has been resolved in PR #1027.

Page | 8

https://github.com/silo-finance/silo-contracts-v2/pull/1027


Silo Vault Detailed Findings

SILV-03 Potential Market Manipulation Through reallocateTo()

Asset PublicAllocator.sol

Status Closed: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

The reallocateTo() function introduces a potential vulnerability that could allow malicious actors to manipulate mar-ket conditions, leading to unfair advantages or financial gains.
This issue arises due to the ability of users to influence supply allocation within specific markets, which can directlyimpact interest rates and create opportunities for exploitation.

1. Scenario 1: Interest Rate Suppression for BorrowersIf a user holds a borrow position in a specific market, they can exploit the reallocateTo() function to flood themarket with additional supply. This sudden increase in supply artificially lowers the interest rate for that market.For users with large borrow positions, the interest savings achieved through this manipulation could far exceedthe associated fees, making the attack economically viable.
2. Scenario 2: Interest Rate Spikes for LiquidationConversely, if a user aims to liquidate a borrow position in a specific market, they can use reallocateTo() toremove a significant portion of the market’s supply. This drastic reduction in supply causes a sharp increase inthe interest rate. As a result, the affected borrow position may fall below the liquidation threshold, triggeringliquidation. The attacker can then submit a liquidation request and claim the liquidation reward. If the rewardexceeds the cost of executing the attack (e.g., fees), the manipulation becomes profitable.

Both scenarios are particularly feasible if the vault holds a substantial amount of deposits in the targeted markets, asthe attacker can leverage the vault’s liquidity to amplify the impact of their actions.
The possible impacts are as follows:

• MarketManipulation: Attackers can artificially suppress or spike interest rates, disrupting the normal functioningof the protocol.
• Financial Losses: Legitimate users may incur losses due to unfair liquidations or distorted interest rates.
• Protocol Instability: Repeated exploitation of this vulnerability could undermine trust in the protocol and desta-bilize its operations.

Recommendations

To mitigate this issue, implement the following measures:
1. Deposit/Withdrawal Caps: Set the optimal value of flowCaps to mitigate the unintended effects of the feature.
2. Fee Adjustments: Dynamically adjust fees based on the size and impact of reallocation transactions to makeexploitation economically unfeasible.

Page | 9



Silo Vault Detailed Findings

Resolution

This issue has been acknowledged by the Silo team.

Page | 10



Silo Vault Detailed Findings

SILV-04 Possible Market Removal With Non-Zero Token Supply
Asset SiloVault.sol

Status Closed: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

There are no checks to ensure that _ERC20BalanceOf(address(market), address(this)) == 0 before market deletion.
In updateWithdrawQueue() on line [344], the code checks to ensure that, if the vaults’s token balance for the market is
non-zero, that a pending removal was set and the timelock for removal has not passed. This is to give sufficient timefor any tokens for the market belonging to the vault to be removed before deletion on line [352]. However, the zerobalance check is missing before market deletion.
This means that it is possible for amarket to be deleted even if a pending removal was set and the timelock for removalhas passed, but the vault still holds a positive token balance. This will in effect leave unmanaged tokens belonging tothe vault for the market which will cause a reduction in available liquidity.
The impact of this reduction in liquidity is a drop in the share price, which will result in withdrawers experiencing a loss.This is due to the fact that totalAssets() has been reduced while totalSupply() remained unchanged, thus causingeach share to be now worth less assets.

Recommendations

As a safety precaution, update the code to check the token balance for the vault in the market before deletion.
This can be achieved by adding the following:
if (_ERC20BalanceOf(address(market), address(this)) != 0) {

revert ErrorsLib.InvalidMarketRemovalNonZeroSupply(market);
}
delete config[market];

Resolution

The Silo team has acknowledged this issue with the following response:
"This is by Morpho design we decided not to change it. See comments here and here".

Page | 11

https://github.com/silo-finance/silo-contracts-v2/blob/develop/silo-vaults/contracts/interfaces/ISiloVault.sol#L106
https://github.com/silo-finance/silo-contracts-v2/blob/develop/silo-vaults/contracts/interfaces/ISiloVault.sol#L152


Silo Vault Detailed Findings

SILV-05 Possibility Of Revert In _claimRewards() Due To Hitting Block Gas Limit
Asset SiloVault.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The _claimRewards() function may revert due to exhausting block gas limit when iterating through large number oflogic controllers.
The function has a for loop that iterates overmultiple incentive claiming logic controllers. Each logic controller calls via
delegatecall() the claimRewardsAndDistribute() function, which has two for loops processing accruedRewards .
If the function loops over N logic controllers, and each logic controller calls claimRewardsAndDistribute() with its
two loops, the first loop iterating over M1 rewards and the second loop iterating over M2 rewards, this results in
O(N × (M1 + M2)) iterations in the worst case.
Since M1 is equal to M2 (both accruedRewards ) the final time complexity is O(N * M) .
This may cause the following issues:

1. High Gas Costs: The nested loops increase gas consumption exponentially if N (the number of logic controllers)and M (the number of accruedRewards ) are large. If the gas limit is exceeded, the entire transaction reverts.
2. Risk of Hitting the Block Gas Limit: If the function handles many incentive logic controllers, the increased gasconsumption from the nested loops may exceed the block gas limit.
3. Call Stipends & Failures: delegatecall inherits the gas limit from the caller, so if a single iteration consumes toomuch gas, subsequent calls may fail mid-loop, leading to failure.

Recommendations

Consider placing an upper limit on the number of incentive claiming logic controllers for each market.

Resolution

This issue has been acknowledged by the Silo team.

Page | 12



Silo Vault Detailed Findings

SILV-06 Malicious Guardian Can Prevent Removal By Exploiting revokePendingGuardian()

Asset Contract.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

A malicious guardian can exploit the revokePendingGuardian() function to prevent their removal from the system.
By continuously revoking any pending guardian updates, the malicious guardian can indefinitely block the owner orother authorised party from replacing them.
This creates a situation where even the owner is unable to remove or replace the guardian, effectively locking thesystem into an undesirable state.
This issue exists because the revokePendingGuardian() function allows a guardian to cancel any pending updatesto their role. If a guardian acts in bad faith, they can abuse this functionality to maintain their position indefinitely,undermining the governance and security of the protocol.

Recommendations

To address this issue, allow the owner to override the revocation process in exceptional cases, ensuring that maliciousguardians can still be removed.

Resolution

This issue has been acknowledged by the Silo team with the following response:
"Adding more power to the owner will create a power misbalance".

Page | 13



Silo Vault Detailed Findings

SILV-07 Lack of Zero-Address Checks
Asset SiloIncentivesControllerCL.sol

Status Resolved: See Resolution
Rating Informational

Description

In the constructor of SiloIncentivesControllerCL contract, there is no check to ensure that the parameters
_vaultIncentivesController and _siloIncentivesController are not the zero address.
The additional checks are advised as both VAULT_INCENTIVES_CONTROLLER and SILO_INCENTIVES_CONTROLLER are im-mutable.

Recommendations

Consider adding a check to ensure that _vaultIncentivesController and _siloIncentivesController are not thezero address.

Resolution

The Silo team has addressed this issue by adding a check to ensure that _vaultIncentivesController and
_siloIncentivesController are not the zero address.
This issue has been resolved in PR #1058.

Page | 14

https://github.com/silo-finance/silo-contracts-v2/pull/1058


Silo Vault Detailed Findings

SILV-08 Lack Of Upper Limit On _notificationReceiver May Lead To Expensive Token Transfers
Asset VaultIncentivesModule.sol

Status Closed: See Resolution
Rating Informational

Description

The function addNotificationReceiver() allows the contract owner to add a notification receiver, which will be called
by SiloVault._afterTokenTransfer() whenever a token transfer occurs. However, the current implementation does
not impose an upper limit on the number of _notificationReceiver addresses that can be added.
This lack of a limit can lead to significant gas costs during token transfers, as each transfer triggers a call to
INotificationReceiver.afterTokenTransfer() for every registered notification receiver. If a large number of receiversare added, the cumulative gas cost of these calls could make token transfers prohibitively expensive, negatively impact-ing the usability and efficiency of the SiloVault contract.

Recommendations

To mitigate this issue, consider introducing a reasonable upper limit on the number of _notificationReceiver ad-dresses that can be added. This limit should balance functionality with gas efficiency.

Resolution

This issue has been acknowledged by the Silo team.

Page | 15



Silo Vault Detailed Findings

SILV-09 Potential Excessive Cost For deposit() And withdraw() Operations
Asset SiloVault.sol

Status Closed: See Resolution
Rating Informational

Description

The SiloVault contracts are designed to support connections to a maximum of 30 markets. While this design allowsfor flexibility and scalability, it introduces significant gas cost implications when the maximum number of markets isreached. Under normal network conditions, the gas costs for key functions such as deposit() and withdraw() arealready substantial, but they can become prohibitively expensive during periods of gas price volatility.
Gas Cost Breakdown

• deposit() : When the maximum of 30 markets is connected, a single deposit() call consumes 2,393,330 gas.
• withdraw() : Similarly, a withdraw() call consumes 1,625,161 gas under the same conditions.

Cost Implications

1. Normal Network Conditions (1 GWei gas price):

• deposit() costs approximately US$6.
• withdraw() costs approximately US$4.

2. High Gas Price Scenarios (50 GWei gas price):

• deposit() costs rise to approximately US$300.
• withdraw() costs rise to approximately US$200.

These costs can become a significant barrier for users, especially during periods of network congestion or gas pricespikes. The high gas costs may deter users from interacting with the protocol, reducing its usability and accessibility.
Impact

• User Experience: High gas costs can discourage users from depositing or withdrawing funds, limiting the proto-col's functionality and adoption.
• Financial Burden: Users may face unexpectedly high transaction fees, particularly during periods of gas pricevolatility, leading to potential financial losses.
• Protocol Efficiency: The high gas costs may reduce the efficiency of the protocol, as users may delay or avoidtransactions altogether.

Page | 16



Silo Vault Detailed Findings

Recommendations

To address this issue, consider implementing the following measures:

1. Gas Optimisation: Review and optimise the SiloVault contract code to reduce gas consumption for deposit()

and withdraw() functions, especially when the maximum number of markets is connected.
2. Batch Transactions: Enable batch processing for deposits and withdrawals to reduce the number of transactionsand overall gas costs.
3. User Alerts: Implement a system to notify users of current gas prices and estimated transaction costs, allowingthem to make informed decisions.

Resolution

This issue has been acknowledged by the Silo team.

Page | 17



Silo Vault Detailed Findings

SILV-10 Miscellaneous General Comments
Asset All contracts
Status Closed: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:
1. Inconsistent Comments and Code for MAX_SETTABLE_FLOW_CAP

Related Asset(s): IPublicAllocator.sol
The comments and code related to the MAX_SETTABLE_FLOW_CAP constant in the contract are inconsistent, whichcould lead to confusion or misinterpretation. Specifically:

• The comment on line [9] states that the maximum cap is type(uint128).max - 1 , which equals
340282366920938463463374607431768211454 .

• However, the comment on line [10] and the actual code on line [11] use type(uint128).max / 2 , whichequals
170141183460469231731687303715884105727 .

This discrepancy creates ambiguity about the intended value of MAX_SETTABLE_FLOW_CAP . If the comments andcode are not aligned, developers may misunderstand the constraints or behaviour of the contract, potentiallyleading to errors in implementation or usage.
To resolve this issue, consider updating the comment on line [9] to match the actual implementation, clarifyingthat MAX_SETTABLE_FLOW_CAP is set to type(uint128).max / 2 .

2. Suggested Renaming of Modifier onlyAllocatorRole for Clarity
Related Asset(s): SiloVault.sol
The current modifier onlyAllocatorRole may be misleading because it grants access not only to allocators butalso to curator. This naming inconsistency can cause confusion, especially when compared to othermodifiers withsimilar behaviour, such as onlyCuratorOrGuardianRole , which explicitly lists all roles it grants access to curatorand guardian, including the owner.
To improve clarity and maintain consistency across the codebase, it is recommended to rename the
onlyAllocatorRole modifier to onlyAllocatorOrCuratorRole . This change would accurately reflect the rolesthat have access and align with the naming conventions used for other modifiers in the system.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The Silo team has chosen to address the first issue by updating the comment to match the code. This has been resolvedin PR #1059.
Page | 18

https://github.com/silo-finance/silo-contracts-v2/pull/1059


Silo Vault Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document. The
forge framework was used to perform these tests and the output is given below.
Ran 1 test for test/tests-local/Ownable2Step.sigp.t.sol:Ownable2StepChildSigpTest
[PASS] test_sigp_owner() (gas: 12628)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 978.46us (133.87us CPU time)

Ran 3 tests for test/tests-local/UtilsLib.sigp.t.sol:UtilsLibTestSigp
[PASS] test_sigp_zeroFloorSub_fuzz(uint256,uint256) (runs: 260, u: 6062, ~: 6062)
[PASS] test_sigp_zeroFloorSub_single_x() (gas: 2188)
[PASS] test_sigp_zeroFloorSub_single_y() (gas: 2133)
Suite result: ok. 3 passed; 0 failed; 0 skipped; finished in 13.85ms (13.15ms CPU time)

Ran 1 test for test/tests-local/MarketTest.sigp.t.sol:MarketTestSigp
[PASS] test_sigp_testUpdateWithdrawQueueInvalidMarketRemovalNonZeroSupply() (gas: 443231)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 182.07ms (1.07ms CPU time)
proptest: Aborting shrinking after the PROPTEST_MAX_SHRINK_ITERS environment variable or ProptestConfig.max_shrink_iters

iterations (set 0 to a large(r) value to shrink more; current configuration: 0 iterations)↪→

Ran 2 tests for test/tests-local/SiloVaultsFactory.sigp.t.sol:SiloVaultsFactoryTestSigp
[PASS] testFail_sigp_createSiloVault_zero_owner_SiloVault(uint256,string,string) (runs: 260, u: 223111, ~: 212441)
[FAIL. Reason: incentivesModule.owner() should be equal to initialOwner:

0x0000000000000000000000000000000000000000 != 0x5a8D0d351b347E9997dC656c964BB92bcb1C5B39;
counterexample: calldata=0x91378b070000000000000000000000005a8d0d351b347e9997dc656c964bb92bcb1c5b3900
0000000000000000000000000002a690dd4e774d919b1a21d8d158b4b79f3400000000000000000000000
0000000000000000000000000000000000000008000000000000000000000000000000000000000000000
000000000000000000e0000000000000000000000000000000000000000000000000000000000000002f2
2e18d97e0bd8f2ec8bae0a1a5f09e8aa6c2a5f09f8990eaa0b2443fc2a5efacb93ae0b6bd3cf09f95b44c
f096bfa300000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000018ce8c2e73e385b0e0b1ae27f09eb9973dc8bac2a4e1898c360000000000000000

args=[0x5a8D0d351b347E9997dC656c964BB92bcb1C5B39, 230904002692875149107248733348236042411828 [2.309e41], "", ""]]
test_sigp_createSiloVault_zero_owner_VaultIncentivesModule_Vuln(address,uint256,string,string) (runs: 0, u: 0, ~:
0)

↪→
↪→
↪→

Suite result: FAILED. 1 passed; 1 failed; 0 skipped; finished in 289.86ms (203.44ms CPU time)

Ran 13 tests for test/tests-local/SiloVault.sigp.t.sol:SiloVaultTestSigp
[PASS] testFail_sigp_inflation() (gas: 871232)
[PASS] testFail_sigp_setCap_max() (gas: 38368)
[PASS] test_sigp_borrow() (gas: 943722)
[PASS] test_sigp_borrow_validMarkets(uint256[100]) (runs: 260, u: 46144386, ~: 46144509)
[PASS] test_sigp_claimRewards() (gas: 12475)
[PASS] test_sigp_deposit_withdraw_one_market(uint256,uint256) (runs: 260, u: 773132, ~: 773188)
[PASS] test_sigp_deposit_withdraw_valid_markets(uint256,uint256) (runs: 260, u: 16461505, ~: 18381264)
[PASS] test_sigp_market_removal_share_price_change(uint256[100]) (runs: 260, u: 46092856, ~: 46092666)
[PASS] test_sigp_setFee_setFeeRecipient() (gas: 43057)
[PASS] test_sigp_submitCap() (gas: 208267)
[PASS] test_sigp_supplyQueue_withdrawQueue() (gas: 4462193)
[PASS] test_sigp_vault_deposit() (gas: 8159512)
[PASS] test_sigp_withdraw_markets() (gas: 15959014)
Suite result: ok. 13 passed; 0 failed; 0 skipped; finished in 42.78s (101.71s CPU time)

Ran 5 test suites in 42.78s (43.27s CPU time): 19 tests passed, 1 failed, 0 skipped (20 total tests)

Failing tests:
Encountered 1 failing test in test/tests-local/SiloVaultsFactory.sigp.t.sol:SiloVaultsFactoryTestSigp
[FAIL. Reason: incentivesModule.owner() should be equal to initialOwner: 0x0000000000000000000000000000000000000000 !=

0x5a8D0d351b347E9997dC656c964BB92bcb1C5B39;]
test_sigp_createSiloVault_zero_owner_VaultIncentivesModule_Vuln(address,uint256,string,string) (runs: 0, u: 0, ~: 0)

↪→
↪→

Encountered a total of 1 failing tests, 19 tests succeeded

Page | 19



Silo Vault Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 20

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/



	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Scope
	Approach
	Coverage Limitations
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Missing owner Data In Cloned VaultIncentivesModule
	skim() Function Allows Unintended Removal Of Share Tokens
	Potential Market Manipulation Through reallocateTo()
	Possible Market Removal With Non-Zero Token Supply
	Possibility Of Revert In _claimRewards() Due To Hitting Block Gas Limit
	Malicious Guardian Can Prevent Removal By Exploiting revokePendingGuardian()
	Lack of Zero-Address Checks
	Lack Of Upper Limit On _notificationReceiver May Lead To Expensive Token Transfers
	Potential Excessive Cost For deposit() And withdraw() Operations
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

